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Abstract

This paper presents a semi-analytical valuation method for basket credit
derivatives in a flexible intensity-based model. Default intensities are mod-
elled as heterogeneous, correlated affine jump-diffusions. An empirical ap-
plication documents that the model fits market prices of benchmark basket
credit derivatives reasonably well, consistent with the observed correla-
tion skew. Hence, I argue, contrary to comments in the literature, that
intensity-based portfolio credit risk models can be both tractable and ca-
pable of generating realistic levels of default correlation.
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1 Introduction

In recent years, the credit derivatives market has undergone a massive growth in
terms of products as well as trading volume. The market is divided into single-
name products and multi-name products, also referred to as basket credit deriva-
tives, in which the cash flows are determined by the observed defaults and losses
in an underlying pool of reference entities. The most traded single-name credit
derivative is a credit default swap (CDS), whereas common basket credit deriva-
tives include collateralized debt obligations (CDOs) and basket default swaps,
such as first-to-default and n’th-to-default swaps. In the pricing of basket prod-
ucts, the marginal default risks of the underlying names are usually implicitly
given from the observed single-name CDS market quotes. Default correlation
among the underlying names is therefore essentially the only remaining unob-
servable element in the valuation of basket credit derivatives, which are for that
reason also referred to as correlation products.

The standard practice for the pricing and hedging of correlation products
is currently the copula approach, which is a very convenient way of modelling
default time correlation given the marginal default probabilities.1 Factor copulas
have become extremely popular in practice, mainly due to the tractability of the
semi-analytical methods developed by Gregory and Laurent (2003), Andersen,
Sidenius, and Basu (2003), and Hull and White (2004). The copula approach is
however problematic for a couple of reasons. First, the choice of copula and the
parameters of the chosen copula are usually difficult to interpret. The dependence
structure is often exogenously imposed without a theoretical justification,2 and
results are usually very sensitive to the copula family and parameters. Second,
as argued in e.g. Duffie (2004), the standard copula approach does not offer a
stochastic model for correlated credit spreads, which is important for realism and
indeed necessary for valuing the CDS index options launched recently.

Given these problems, a natural alternative to copulas is a multivariate version
of the intensity-based models,3 where default is defined as the first jump of a pure

1See e.g. Schönbucher (2003) for an introduction to copulas in credit risk modelling.
2In one of the first copula applications to portfolio credit risk, Li (2000) demonstrated that

a one-period Gaussian copula with asset correlations as correlation parameters is equivalent
to a multivariate Merton (1974) model. Due to this link, the copula correlation parameters
are often interpreted as asset correlations. This is however only valid in a static one-period
model, yet the Gaussian copula is often applied for modelling correlated default times. In the
dynamic setting, a proper structural default definition is a barrier-hitting event along the lines
of e.g. Black and Cox (1976), and not a sequence of Merton models. Extensive calculations
(not reported) indicate that, for a given set of marginal default probabilities, the Gaussian
copula using asset correlations tends to overestimate default correlation slightly relative to a
multivariate dynamic structural model.

3Intensity-based credit risk models have traditionally been termed reduced-form models.
Copula models are, however, even more reduced (the marginal default probabilities are specified
in reduced form and the dependence structure is exogenously imposed), and therefore this label
is not used here.
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jump process with a certain (default) intensity or hazard rate. Intensity-based
credit risk models were introduced by Jarrow and Turnbull (1995), Lando (1994,
1998), Schönbucher (1998) and Duffie and Singleton (1999) and have proven
very useful in the single-name credit markets.4 It is, however, often argued that
intensity-based models are inappropriate for portfolio credit risk modelling. First,
the range of default correlations that can be generated in these models is limited
due to the fact that defaults occur independently conditional on the intensity
processes (although as mentioned in Schönbucher (2003), this is less of a prob-
lem when jumps are included and when large pools are considered). Second,
it is sometimes stated (e.g. in Schönbucher and Schubert (2001) and Hull and
White (2004)) that intensity-based portfolio models are intractable and too time-
consuming.

This paper, however, presents a semi-analytical valuation method in a multi-
variate intensity-based model, showing that these models can be both tractable
and able to generate realistic correlations. Default intensities are modelled as cor-
related affine jump-diffusions decomposed into common and idiosyncratic parts.
The intensity model is similar to the model proposed by Duffie and Gârlea-
nu (2001) but this paper offers two extensions. First, a more flexible specification
of the default intensities is proposed, allowing credit quality and correlation to
be chosen independently. Second, heterogeneous default probabilities are allowed
in the semi-analytical solution of this paper, whereas the analytical method of
Duffie and Gârleanu (2001) requires homogeneity. This is important in practice
since single-name CDS quotes often vary by several hundred basis points within
the benchmark CDS indices.5

The semi-analytical solution is derived in two steps. In the first step, the
distribution of the common factor is obtained by inversion of the characteristic
function using fast Fourier transform (FFT) methods along with the powerful
results of Duffie, Pan, and Singleton (2000). The characteristic function of an
integrated affine process requires a small extension of their results, which is proved
in the appendix. In the second step, heterogeneous default probabilities are
handled using the recursive algorithm of Andersen, Sidenius, and Basu (2003).
Semi-analytical valuation in affine jump-diffusion intensity models has previously
been proposed by Gregory and Laurent (2003), although the complications of the
common factor distribution in the first step are not addressed in that paper. Their
method relies on an additional Fourier transform in the second step instead of
the recursion used in this paper.

An empirical application documents that the intensity model fits the market

4Important empirical applications of intensity-based models include Duffee (1999) and
Driessen (2004) on corporate bonds as well as Longstaff, Mithal, and Neis (2004) on CDSs.

5Besides that, standard implementations of the analytical solution in Duffie and Gârlea-
nu (2001) may be numerically instable when the pool is large (more than, say, 50 entities),
which is problematic since pools in practice often consist of 100 names or more. The analytical
method proposed here is numerically stable for large pools.
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prices of benchmark basket credit derivatives reasonably well. While the at-
tainable levels of default correlation in an intensity-based model are limited, the
model is able to produce correlations consistent with the market-implied levels,
at least for the large CDO pools considered in this study. For small pools, default
correlations in the model may be too low for some cases. The results also show
that jumps are needed in the common component to obtain realistic correlations.
In addition to the level, the model also fits the shape of correlations reasonably
well. That is, the model is able to generate pricing patterns fairly consistent
with the correlation skews observed in the standard model, which is the Gaus-
sian copula. Skew-consistent pricing has previously been reported by Andersen
and Sidenius (2004) in a Gaussian copula with stochastic factor loadings and by
Hull and White (2004) in a t copula. A comparison shows that the ability of
the intensity model to match CDO market prices is comparable with that of the
stochastic factor loading copula but not quite as good as that of the t copula.

Relative to the copula approach, the intensity-based model has the advantage
that the parameters have economic interpretations and can be estimated, for ex-
ample from CDS market data. The jump and correlation parameter values needed
to generate the results of this paper are relatively high but do not seem exces-
sive. The mere fact that we can discuss whether the parameters are reasonable or
not testifies to the model’s interpretability, which may also be useful for forming
opinions on the absolute pricing levels of correlation products. Furthermore, the
model, by nature, delivers stochastic credit spreads and is therefore well-suited
for the pricing of options on single-name CDSs, CDS indices and CDO tranches.
If anything, these advantages come at the cost of additional computation time.
Although semi-analytical, the model is slower than the fastest copula models but
not necessarily so for some of the less tractable copulas, e.g. the t copula of
Hull and White (2004) in which the marginal default probabilities, needed for
calibration to the single-name CDSs, are not known in closed form.

The remainder of the paper is organized as follows. Section 2 describes the
intensity-based model as well as the semi-analytical solution. Section 3 presents
the empirical application to basket credit derivatives pricing, and Section 4 con-
cludes.

2 The intensity-based model

This section introduces the multivariate intensity-based model and describes the
semi-analytical valuation method, but first some notation and a brief outline of
the single-name intensity-based framework.

We consider an underlying pool of N equally-weighted entities over a time
horizon T . For each entity i = 1, . . . , N , τi denotes the time of default and
Di(t) = 1{τi�t} is the default indicator up to time t ∈ [0, T ]. A constant recovery
rate, δ ∈ [0, 1), is assumed throughout this paper, and therefore the focus is on

4



the number of defaults, which is denoted by Dt =
∑N

i=1 Di(t).
6

Throughout the paper, everything is done under the probability measure Q,
which could in principle be any probability measure. For the pricing analysis in
Section 3, Q is assumed to be the risk-neutral measure. For risk management, Q

could be taken as the real-world measure.

2.1 The single-name setting

In the intensity-based credit risk model, default is defined as the first jump of
a pure jump process, and it is assumed that the jump process has an intensity
process. More formally, it is assumed that a non-negative process λ exists such
that the process

M(t) := 1{τ�t} −
∫ t

0

1{τ>s}λs ds (1)

is a martingale.
In this setting, default is an unpredictable event (an inaccessible stopping

time), and the probability of default over a small interval of time (in the limiting
sense) is proportional to the intensity

lim
∆→0

Pr
(
τ � t + ∆

∣∣τ > t
)

= λt∆ (2)

These models were first studied by Jarrow and Turnbull (1995) using constant
default intensities, in which case default is the first jump of a Poisson process.
For stochastic intensities, introduced by Lando (1994, 1998), default is the first
jump of a so-called Cox process or doubly stochastic process. Conditional on
the path of the stochastic intensity, a Cox process is an inhomogeneous Poisson
process. Hence, the conditional default probabilities are given by

Pr
(
τ � t

∣∣{λs}0�s�t

)
= 1 − e−

∫ t
0 λsds (3)

and the unconditional default probabilities by

Pr
(
τ � t

)
= 1 − E

[
e−

∫ t
0 λsds

]
(4)

6Loss distributions for heterogeneous recovery rates or face values can still be computed semi-
analytically in the model using a discrete bucketing procedure (a refinement of the recursion in
(14)) along the lines of Andersen, Sidenius, and Basu (2003) or Hull and White (2004). The fact
that recovery rates empirically are negatively correlated with default rates (see e.g. Hamilton
et al. (2004)) is out of scope for this paper, but as in copula models it could be incorporated,
at the cost of additional complication and computation time, by imposing some dependence of
recovery rates on the common factor. Numerical examples in Andersen and Sidenius (2004)
suggest that stochastic recovery rates are not an essential modelling feature in fitting CDO
market prices.
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As can be seen from the last expression, default risk modelling in this frame-
work is mathematically equivalent to interest rate modelling. Therefore, many
well-known and useful techniques from this field can be applied for different spec-
ifications of the default intensity. A particularly tractable and flexible family of
models is the class of affine jump-diffusions, characterized and analyzed by Duffie,
Pan, and Singleton (2000). This paper applies the affine class in a multi-name
setting.

2.2 The multi-name model

In the multi-name model it is assumed that default of entity i is modelled as the
first jump of a Cox process with a default intensity composed of a common and
an idiosyncratic component in the following way:

λi,t = αixt + xi,t (5)

where αi > 0 is a constant and the two processes, x and xi, are independent
affine processes. As shown in Duffie and Gârleanu (2001), multiple sectors –
interpreted as industries or geographic regions – could be incorporated in this
setting as multiple common factors. The default intensity in (5) is a very simple
modification of the specification in Duffie and Gârleanu (2001), which is the
special case of αi = 1. To see why the modification is relevant, consider a
heterogeneous pool in the case αi = 1 for i = 1, . . . , N . Then obviously the
common component must be smaller than the smallest default intensity in the
pool (the components are non-negative, as we shall see). This implies that firms
of low credit quality must have very low correlation with the common factor (high
xi relative to x). Also, the firms of the highest credit quality will typically have
relatively high correlation with the common factor. On the contrary, (5) imposes
no implicit constraint on the combination of credit quality and correlation.7

More specifically, suppose the common component follows

dxt = κ(θ − xt)dt + σ
√

xtdWt + dJt (6)

and the idiosyncratic components follow

dxi,t = κi(θi − xi,t)dt + σi
√

xi,tdWi,t + dJi,t (7)

for i = 1, . . . , N , where

• W,W1, . . . ,WN are independent Wiener processes.

7Recent empirical evidence in Das et al. (2004) documents that high grade companies tend
to have higher default correlations than low grade companies, but there are large variations in
the correlation levels across companies within a given credit quality. This is captured by the
firm-specific constants, αi.
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• J, J1, . . . , JN are independent pure-jump processes, independent of the Wiener
processes.

• the jump times are those of a series of Poisson processes with intensities
l, l1, . . . , lN .

• the jump sizes are exponentially distributed with means µ, µ1, . . . , µN , in-
dependent of the jump times.

The restriction to positive jumps seems reasonable since most large jumps in
credit spreads are positive. Given the square root volatility structure and the
positive jumps, the components – and thereby the default intensities – are strictly
positive under the parameter restrictions 2κθ � σ2 and 2κiθi � σ2

i .
These processes are basic affine processes (AJD), as defined by Duffie and

Gârleanu (2001). Appendix A provides a few useful results for AJDs, and using
the notation introduced in the appendix, the processes under consideration can,
in short, be denoted as

x ∼ AJD(x0, κ, θ, σ, l, µ)

αix ∼ AJD(αix0, κ, αiθ,
√

αiσ, l, αiµ)

xi ∼ AJD(xi,0, κi, θi, σi, li, µi)

(8)

Note that a scaled AJD is an AJD with unchanged jump intensity but scaled
jump size. The drift and diffusion parameters are scaled as usual in the CIR
case.

The tractable specifications of x and xi are needed to allow for a semi-
analytical solution of the portfolio loss distribution. The sum of two AJDs with
identical mean-reversion rates (κ’s), volatilities and jump size parameters is again
an AJD. Therefore, parameter restrictions could ensure that the default intensi-
ties also belong to the AJD class but that is not needed. The independence of the
two components automatically ensures that the marginal default probabilities –
needed for the calibration to the single-name CDS market – are known in closed
form,

Pr
(
τi � t

)
= 1 − E

[
e−

∫ t
0 λi,sds

]
= 1 − E

[
e−αi

∫ t
0 xsds

] × E
[
e−

∫ t
0 xi,sds

]
= 1 − eA(t; κ,αiθ,

√
αiσ,l,αiµ)+B(t; κ,

√
αiσ)αix0+A(t; κi,θi,σi,li,µi)+B(t; κi,σi)xi,0

(9)

where A and B are deterministic functions given explicitly in (30) in Appendix
A.1.

The most general version of the model is very rich, with a total of 6 + 7N
parameters. In many applications of the model it may be appropriate to reduce
the parameter space, which can be done in a reasonable way without loosing the
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flexibility to fit the most important name-specific quantities: CDS level, slope,
volatility and correlation. Section 3.2 presents an empirical application of a very
parsimonious version of the model.

2.2.1 Semi-analytical loss distributions

For efficient computation of loss distributions in the model, define the common
factor Z as the integrated common process,

Zt :=

∫ t

0

xsds (10)

Given the common factor, defaults occur independently across entities, and closed-
form solutions of the default probabilities are given in the following form

pi(t|z) := Pr
(
τi � t

∣∣Zt = z
)

= 1 − e−αizE
[
e−

∫ t
0 xi,sds

]
= 1 − e−αiz+A(t; κi,θi,σi,li,µi)+B(t; κi,σi)xi,0

(11)

again with A and B given explicitly in Appendix A.1.
Unconditional joint default probabilities can be written as integrals of the

conditional probabilities over the common factor distribution,

Pr
(
Dt = j

)
=

∫ ∞

−∞
Pr

(
Dt = j

∣∣Zt = z
)
fZt(z) dz (12)

where fZt(·) is the density function of the common factor. Once the density has
been found, which is dealt with below, numerical integration can be done very
efficiently using quadrature techniques, since the integrand is a relatively smooth
function of the integrator.

Given the common factor, joint default probabilities can be calculated from
the marginal default probabilities, (11), both with homogeneous and heteroge-
neous credit qualities.

In a homogeneous pool, the number of defaults given the common factor is
binomially distributed,

Pr
(
Dt = j

∣∣Zt = z
)

=
(N

j

)
pi(t|z)j

(
1 − pi(t|z)

)N−j
(13)

and the loss distribution, (12), is just a mixed binomial distribution.
In a heterogeneous pool, joint default probabilities can be obtained through

the following recursive algorithm due to Andersen, Sidenius, and Basu (2003).
Let DK

t denote the number of defaults at time t in the pool consisting of the
first K entities. Since defaults are conditionally independent, the conditional
probability of observing j defaults in a K-pool can be written as

Pr
(
DK

t = j
∣∣Zt = z

)
= Pr

(
DK−1

t = j
∣∣Zt = z

) × (
1 − pK(t

∣∣z)
)

+ Pr
(
DK−1

t = j − 1
∣∣Zt = z

) × pK(t|z)
(14)
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for j = 1, . . . , K. For j = 0 the last term obviously disappears. The recursion
starts from Pr(D0

t = j|Zt) = 1{j=0} and runs for K = 1, . . . , N with Pr(Dt =
j|Zt) = Pr(DN

t = j|Zt). The intuition is that j defaults out of K names can
be attained either by j defaults out of the first K − 1 names and survival of the
K’th name, or by j − 1 defaults out of the first K − 1 and a default of the K’th
name. This method has previously been applied for semi-analytical valuation in
copula models but is equally useful in the intensity-based models.

It only remains to find the distribution of the common factor. By definition,
the characteristic function, ϕZt(·), is given by

ϕZt(u) := E[eiuZt ] =

∫ ∞

−∞
eiuzfZt(z) dz (15)

which is a Fourier transform of the density function. Therefore, the density can
be found by Fourier inversion,

fZt(z) =
1

2π

∫ ∞

−∞
e−iuzϕZt(u) du (16)

which can be computed very efficiently using fast Fourier transform (FFT) meth-
ods.8

The characteristic function of an integrated AJD is slightly outside the class
of transforms considered in Duffie, Pan, and Singleton (2000), but Proposition
1 in Appendix A.2 proves that their result can be extended to cover this case
as well.9 As shown, the characteristic function is given by the exponential affine
form

ϕZt(u) = eÃ(0; t,u,κ,θ,σ,l,µ)+B̃(0; t,u,κ,σ)x0 (17)

where Ã and B̃ are complex-valued deterministic functions solving the ODEs in
(32). The ODEs can be solved almost instantaneously, for example using Runge-
Kutta methods.

In summary, the loss distribution is found by numerical integration of the
conditional default distribution over the common factor density. The conditional
default distribution is binomial in a homogeneous pool and is found by a simple
recursion in a heterogeneous pool. The density of the common factor, in turn, is
obtained through Fourier inversion of the characteristic function, which is known
in closed form up to ODEs.

8See Černy (2004) for an introduction to FFT methods in derivatives pricing. Routines are
available in many software packages and e.g. in Press et al. (1992).

9The Laplace transform of an integrated AJD does belong to the class of transforms covered
in Duffie, Pan, and Singleton (2000) and explicit ODE solutions are available (see Appendix
A.1). The density function could then be obtained, using Mellin’s inversion formula, by integra-
tion of the Laplace transform along a straight line in the complex plane. The density function
is, however, more easily obtained by inversion of the characteristic function rather than the
Laplace transform.
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Relative to the semi-analytical factor copula solution in Andersen, Sidenius,
and Basu (2003), the only added computational complexity in the intensity-
based model is that the distribution of the common factor is more involved. If
intensities were modelled as Ornstein-Uhlenbeck processes, the common factor
would be Gaussian and the two methods would be equally tractable. The normal
distribution is, however, not an appropriate description of default intensities –
non-negativity is preferable and as we shall see jumps are needed to generate
realistic correlation levels.

3 Basket credit derivatives valuation

This section applies the intensity-based model for valuation of synthetic CDOs.
After a short description of the product, we shall test how the model conforms
with market prices.

3.1 Synthetic CDOs

In a CDO, the credit risk of an underlying pool of bonds, loans or CDSs is passed
through to a number of tranches according to some prioritization scheme. The
structure is referred to as a synthetic CDO when the underlying credit risk is
constructed synthetically through CDSs. For cash CDOs (or funded CDOs), the
tranches resemble bonds with an up-front price in return for future interest, prin-
cipal and recovery payments. This section considers unfunded synthetic CDOs
with payoff structures closer to basket default swaps. The credit risk in buying a
cash CDO tranche corresponds to selling loss protection on an interval of the un-
derlying portfolio loss distribution in an unfunded CDO.10 The protection seller
agrees to make potential future loss payments in return for periodic premium
payments. The precise cash flows are described below.

The early days of the CDO market were characterized by low liquidity and
non-standardization. Traditional cash CDOs have deal-specific documentation
and underlying portfolio, and the payoff structure (the so-called CDO waterfall) is
often complex and path-dependent. To improve liquidity, a number of investment
banks introduced market making in standardized synthetic CDOs in 2003. The
documentation and payoff structure were standardized as well as the underlying
pool consisting of a benchmark CDS index. The product is therefore known as
an index tranche, but it is sometimes also referred to as a single-tranche CDO
due to the fact that it facilitates trading of a single CDO tranche as an OTC
derivatives contract between two counterparties. This is much more flexible than
the issuance process for traditional CDOs, where the originator has to set up
a special purpose vehicle (SPV), obtain tranche credit ratings from the rating

10The terminology is similar to the single-name market, where the credit risk in buying a
corporate bond roughly corresponds to selling a credit default swap.
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tranche loss, TKL,KU
(L)

underlying loss, L
KL KU

KU − KL

Figure 1: Index tranche loss. The loss on a tranche with attachment point KL and
detachment point KU as a function of underlying portfolio loss.

agencies, and find investors for the entire CDO capital structure. Moreover, the
launch of market making in index tranches has enabled investors to take on both
long and short positions in CDOs.

3.1.1 Index tranche cash flows

Consider an index tranche covering a part of the portfolio loss distribution from
a lower attachment point, KL, to an upper detachment point, KU . The tranche
loss as a function of portfolio loss L is defined as

TKL,KU
(L) := max{L − KL, 0} − max{L − KU , 0} (18)

which has the familiar structure of a call spread option written on the portfolio
loss, see Figure 1. In broad outline, the protection seller pays the observed tranche
losses as they occur and receives premium payments on the remaining principal,
which amortizes with the loss payments.

To be specific, suppose a T -year contract has premium payments in arrears
with a frequency of f per year. Typical contracts specify quarterly payments,
f = 4, which is the case for the contracts considered in this paper. Denote the
annual premium by S and the payment dates by tj = j/f , for j = 1, . . . , T f .
The cumulative percentage loss of the portfolio incurred up to time t is denoted
by Lt = (1− δ)Dt/N . Furthermore, the time-t default-free short rate and s-year
zero-coupon bond are denoted by rt and P (t, t + s), respectively.

The notional amount is some multiple, which is without loss of generality set
to 1, of the tranche thickness, KU − KL. The value of the protection leg is then

Prot(0, T ) = E
[ ∫ T

0

e−
∫ t
0 rsdsdTKL,KU

(Lt)
]

(19)

With quarterly premium payments, as in this paper, the set of premium payment
dates provides a natural discretization of the integral. A more fine-grained parti-
tion could be applied with obvious notational changes in the following equations.
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If, in addition, losses on average occur in the middle of these intervals and interest
rates are uncorrelated with losses, as is often assumed for these products,

Prot(0, T ) =

Tf∑
j=1

P
(
0, tj − 1

2f

){
E

[
TKL,KU

(Ltj)
] − E

[
TKL,KU

(Ltj−1
)
]}

(20)

The value of the premium leg is

Prem(0, T ; S) = E
[ Tf∑

j=1

e−
∫ tj
0 rsds S

f

∫ tj

tj−1

KU − KL − TKL,KU
(Ls)

tj − tj−1

ds
]

(21)

where the integral represents the remaining principal over the interval tj−1 to
tj, which determines the premium payment a date tj. With discretization and
assumptions similar to those for the protection leg we get

Prem(0, T ; S) =
S

f

Tf∑
j=1

P
(
0, tj

)
(22)

×
{

KU − KL − 1

2

(
EQ[TKL,KU

(Ltj−1
)] + EQ[TKL,KU

(Ltj)]
)}

The fair tranche premium is then defined as the premium, S, that makes the
value of the premium leg equal to the value of the protection leg.

The equity spread is very high and therefore the timing of defaults becomes
very important. To reduce the timing risk, the equity tranche premium leg is
usually divided into an up-front fee plus a fixed running premium of 500 basis
points (bps).11 The up-front fee is quoted as a fraction, y, of tranche notional,

11This point can be illustrated in the following small example, which is deliberately simple
and extreme to make the effect clearer. Consider a 5-year single-name CDS written on a very
risky firm with a 5-year default probability of 80%. Suppose default occurs with a constant
hazard rate λ, which must then be 32.19% (= − log(1−0.8)/5) to match the default probability.
Assume the recovery rate is δ = 50%, interest rates are zero and the notional is 100. The value
of the protection leg is then 40 (= 100(1 − δ)0.8). Suppose a protection buyer has the choice
between paying an up-front fee or a running premium. If the protection buyer pays 40 up-front
and no running premium, her net profit is 10 in case of default before maturity and -40 otherwise.
If the protection buyer instead chooses to pay no up-front fee and only running premium, the
fair annual CDS premium is 1609bps (= (1 − δ)λ). Her net profit is then 50 − 16.09τ in case
of default before maturity and -80.47 otherwise (5 years of 16.09). The standard deviation
of net profits is then 48.7 (using the fact that the default time is exponentially distributed),
which could be reduced to 20 with an up-front fee. Also, the range of possible net profits can
be narrowed from [-80.47, 50] to [-10, 40] with an up-front fee. Furthermore, it is clear that
if the protection buyer only wants exposure to the event of default or not at some horizon
and not to the timing of default, an up-front premium is preferred. In this example, buying
protection without an upfront-fee can lead to a net loss even in the event of default prior to
maturity. If default occurs sufficiently late in the contract (after 3.11 years), the premium
payments dominate the loss compensation.
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i.e.

Premeq(0, T ; 0.05, y) = yKU

+
0.05

f

Tf∑
j=1

P (0, tj)
{

KU − 1

2

(
EQ[T0,KU

(Ltj−1
)] + EQ[T0,KU

(Ltj)]
)} (23)

The fair equity tranche price is then defined as the up-front fee, y, balancing the
premium and protection legs.

All tranche prices are expressed in terms of expected tranche losses at different
horizons, which are obtained from the portfolio loss distributions. In principle
Tf loss distributions are needed, but very good price approximations could be
achieved by interpolating expected tranche losses from a lower number of loss
distributions.

3.2 Empirical application

As mentioned the general version of the model is very rich, and of course the
chosen parametrization in any application of the model should reflect the data
set at hand and the context of the application. In the following, a parsimonious
version of the model is calibrated to a data set consisting of market quotes on
synthetic CDOs and underlying CDSs for the most liquid 5-year maturity. The
CDO quotes are available on the five benchmark tranches trading on each of
the two most liquid CDS indices: The Dow Jones iTraxx index, consisting of
125 European investment grade companies, with 0-3%, 3-6%, 6-9%, 9-12% and
12-22% tranches; and the Dow Jones CDX index, consisting of 125 North Amer-
ican investment grade companies, with 0-3%, 3-7%, 7-10%, 10-15% and 15-30%
tranches. All quotes were obtained from Bloomberg, using the Bloomberg generic
price source, as of August 23, 2004.

The 125 iTraxx CDS (mid) quotes range from 11bps to 127bps with average
and median quotes at 39.1bps and 36.0bps, respectively. The index is quoted
slightly below the average at 38.8bps (mid). The CDX pool is highly heteroge-
neous with quotes ranging from 18bps to 468bps, and an average and median of
67.1bps and 48.0bps, respectively. The CDX index is quoted substantially below
the average at 61.5bps.

3.2.1 Calibration

A number of restrictions need to be imposed to arrive at a specification with
a single name-specific parameter, which can be calibrated to the single name-
specific input, and a single correlation parameter, which can be varied without
affecting the marginal distributions.
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Recall that λi,t = αixt + xi,t and

αix ∼ AJD(αix0, κ, αiθ,
√

αiσ, l, αiµ)

xi ∼ AJD(xi,0, κi, θi, σi, li, µi)
(24)

First of all, given only a single point on the CDS curves, the slopes are neu-
tralized by initializing the processes at their mean-reversion levels, x0 = θ and
xi,0 = θi. The CDS curves are then approximately flat – the implied 1- to 5-year
CDS premiums are upward-sloping within 10bps for the relevant credit quali-
ties.12 If the model was calibrated to term structures of CDS spreads, instead of
just the 5-year points, the initial values should be left among the free parameters
in the fitting of the shape of the curves.

Next, we assume that the mean-reversion levels of the default intensities are
common across entities apart from the scaling factors, i.e. αiθ where θ is a com-
mon constant. Also, we assume a common jump intensity of l. These assumptions
correspond to picking θi = αi(θ − θ) and li = l − l. Furthermore, we assume

κi = κ, σi =
√

αiσ, µi = αiµ (25)

This way the individual default intensities reduce to the following AJDs:

λi ∼ AJD(αiθ, κ, αiθ,
√

αiσ, l, αiµ) (26)

As in Duffie and Gârleanu (2001), it is assumed that the ratio of systematic to
idiosyncratic jump intensity is identical to the ratio of systematic to idiosyncratic
mean-reversion level. This allows default correlation to be controlled by a single
correlation parameter,

w := θ / θ = l / l ∈ [0, 1] (27)

representing the systematic part. Note that w = 0 implies independent intensity
processes and w = 1 implies perfectly correlated intensity processes, which of
course does not mean perfectly correlated default events since defaults still occur
independently given the intensity processes. Importantly, the correlation param-
eter does not affect the marginal default intensities and can therefore be chosen
freely after the model has been calibrated to single-name CDS quotes.

One final restriction is imposed because both θ and the αi’s are level param-
eters of the credit spreads. A higher (lower) θ would be offset by lower (higher)
αi’s in the calibration, and therefore I propose to fix θ such that the CDS index
or average is matched for αi = 1. For a homogeneous pool, this implies αi = 1
for all entities. For a heterogeneous pool, the αi’s are spread around 1.

This parametrization leaves five free parameters: κ, σ, l, µ and w. In sum-
mary, the procedure is the following. For each combination of the first four
parameters:

12If instead the processes were initialized at their long-run means x0 = θ + lµ/κ and xi,0 =
θi + liµi/κi, as proposed in Duffie and Gârleanu (2001), the CDS curves would be downward-
sloping, which is counterfactual for most investment grade companies.
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1. Calibrate θ to fit the CDS index or average level.

2. Calibrate the αi’s to fit the heterogeneous CDS quotes. (If homogeneous
CDS quotes are assumed, αi = 1 for all entities.)

3. Vary w.

The calibration to the single-name CDS market in the first two points is straight-
forward, but for completeness Appendix B provides a few details.

The model is fitted to the index tranche market prices by minimizing the root
mean square price errors relative to bid/ask spreads,

RMSE =

√√√√1

5

5∑
j=1

( Sj, market mid − Sj, model

Sj, market ask − Sj, market bid

)2

(28)

where Sj is the spread of tranche j. The liquidity varies across tranches, and this
way price errors on the most reliable prices get the highest weights.

In line with empirical levels, we assume a constant riskless interest rate of
r = 0.03 and a recovery rate of δ = 0.4. The CDS and index tranche spreads
are both relatively insensitive to the level of riskless interest rates. Furthermore,
a lower (higher) recovery rate would be offset by lower (higher) CDS-implied
marginal default intensities, and since index tranche spreads are primarily driven
by the loss rates (loss given default times default intensity) in the underlying
pool, the parameter value for the recovery rate is, within reasonable bounds, not
too critical. Consequently, the results are fairly robust to these two specifications.

3.2.2 Results

The model is calibrated both with the full list of heterogeneous CDS spreads and
with homogeneous CDS spreads at the average level, which can be seen as an
approximation with a simpler hypothetical pool.

The results for the iTraxx index are reported in Table 1. The calibrated
intensity model fits the market prices very well with an error measure of 0.74 based
on the heterogeneous CDS spreads. Surprisingly, the model fits slightly better
(RMSE of 0.67) when the marginal distributions are calibrated to a homogeneous
CDS spread (the pool average of 39.1bps). The number of free parameters is the
same in both cases, but one might expect that incorporating the information in
the 125 different CDS quotes would lead to a better fit to CDO prices. One
reason why heterogeneity does not improve the fit to the iTraxx tranches may
be that the 125 quotes are relatively homogeneous (11-127bps) – as we shall see,
the heterogeneous model does fit better for the much more heterogeneous CDX
index (18-468bps).

The jump parameters are relatively high but not too implausible, since the
impact of a jump in the instantaneous default intensity is moderated by the

15



mean-reversion tendency of the process. To understand the magnitude, consider
a typical (αi = 1) company with the fitted parameter values κ = 0.27, σ = 5%,
l = 1.7% and µ = 7.8% (the heterogeneous case). With initial value and mean-
reversion level of the default intensity at θ = 0.46%, the 5-year CDS is priced at
39.1bps (the iTraxx average). A jump in the default intensity of 780bps (the mean
jump size) increases the 5-year CDS spread to 307bps – i.e. the credit spread only
jumps by 268bps (of course short maturity spreads jump more, around 400bps
for a 1-year CDS). The median credit rating in the underlying pool is A, and a
jump of that magnitude corresponds approximately to a rating migration from
A to BB.13 The observed 1-year frequencies for migrations from A to BB or
worse (B or CCC) are on average around 0.8% but vary a lot across observation
periods. Therefore, an expected credit spread jump of 300bps once or twice in a
century (l is 1.7%) does not seem excessive, at least not under the risk-neutral
measure.

The correlation parameter is fitted around 91-93%, which implies that most of
the variations in the default intensities are common fluctuations. The correlation
parameter does seem very high and higher than expected considering the degree
of co-movement observed in CDS premiums across time. As illustrated in the
table, restricting the correlation parameter at a lower value (for example 70%)
could however still fit prices reasonably well with slightly higher jump parameters.
The table also shows that pure diffusion intensities, as expected, generate too low
default correlation – too high equity spreads and too low senior spreads.

As mentioned in the introduction, the fact that we can interpret parameters
and discuss whether they are reasonable or not is exactly one of the advantages
of the intensity-based model. This may be helpful in forming opinions on the
absolute pricing of correlation products (provided that the model is considered
reasonable).

For comparison, the table also reports the fit of three copula models: (i) the
1-factor Gaussian copula, (ii) the Gaussian copula with stochastic factor loadings
proposed by Andersen and Sidenius (2004), and (iii) the double-t copula of Hull
and White (2004). A very brief outline of the three copula models is provided for
completeness in Appendix C. For more details, refer to the individual papers.

As expected, the Gaussian copula provides a very poor description of the
market prices. At the fitted value, a higher correlation is needed to match the
equity tranche and the most senior tranches, whereas much less correlation is
needed to match the most junior mezzanine tranche (3-6%). The two alternative
copulas fit market prices much better. The fit of the intensity model is slightly
better than that of the copula with stochastic factor loadings, whereas the double-
t copula provides the best fit to the market prices. The basket credit derivatives
market is still very immature and it is difficult to rule out supply and demand
effects caused by market segmentation or market inefficiency. Therefore, a perfect

13See e.g. the average CDS statistics in Table 2 of Longstaff, Mithal, and Neis (2004).
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fit to the market prices should perhaps not be expected, and the model with the
best fit may not be the most appropriate one. As mentioned in the introduction,
the properties of the models are very different.

The results for the CDX index are reported in Table 2. Compared with the
iTraxx results, the AJD model is fitted with higher jump intensities but lower
jump sizes. Again, to investigate the jump impact we consider a company with the
fitted parameters κ = 0.2, σ = 5.4%, l = 3.7% and µ = 6.7% (the heterogeneous
case), for which a 5-year CDS premium of 67.1bps (the CDX average) is reached
with θ = 0.73%. A default intensity jump of 670bps causes an increase in the 5-
year CDS premium to 210bps – a jump of 143bps, corresponding approximately
to a downgrade by one and a half rating categories (A to BBB− or BB+).
An expected frequency of 3.7% for such a migration is again relatively high but
certainly not unrealistic.

All the models show a worse fit to the CDX index tranches, but the relative
performance of the models is about the same. This could be interpreted as
evidence that the iTraxx market is more efficient than the CDX market. The fits
of the intensity model and the stochastic factor loading copula are comparable,
whereas the double-t copula still fits better. For the CDX index, incorporating
the 125 heterogeneous CDS spreads improves the ability to match the CDO prices
for all the models as we would expect. As mentioned, this was not the case for
the iTraxx index which may be explained by the fact that the range of underlying
spreads in the CDX index is much wider than the range of iTraxx spreads.

In conclusion, the ability of the intensity-based model to fit CDO market
prices is comparable with alternative models proposed in the literature. The re-
sults should of course be interpreted with some caution since only a single trading
day is considered. The interesting questions of performance and parameter sta-
bility over time of the various models are left for further research.

Implied correlation skews
Recently, brokers and investment banks have been quoting tranche prices in terms
of implied correlations through a standard model, analogous to the practice of
quoting implied Black-Scholes volatilities in option markets. The standard model
is the 1-factor Gaussian copula.14 For each tranche, the implied correlation is de-
fined as the homogeneous correlation parameter that produces a standard model

14To complete the standard model, assumptions on recovery rates, marginal default proba-
bilities and interest rates are needed in addition to the correlation specification. As mentioned
in Finger (2005), complete agreement with respect to a full specification of the standard model
has not yet been reached across all market participants. The standard model of this paper is,
as in Hull and White (2004), based on marginal default probabilities derived from constant
and homogeneous default intensities. Furthermore, as in the rest of the paper, r = 3% and
δ = 40%.
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price identical to the market price.15 If the Gaussian copula was the true model,
the implied correlations would be identical across tranches on the same under-
lying pool. As we saw in the calibration, in practice they are not, and a very
significant so-called correlation skew is observed.

Figure 2 illustrates the correlation skews generated by the calibrated AJD
model. The model-implied correlations are fairly close to the market-implied
correlations – especially for the iTraxx index. Although this is just another way
of representing tranche prices, minimizing the price errors is not necessarily the
same objective as getting the nicest fit to the correlation skew. Figure 3 shows
similar results for the Gaussian copula with stochastic factor loadings and the
double-t copula.

Market-implied loss distributions
The shape of the market-implied loss distribution can be inferred from the models
that have proven able to match the implied correlation skew. Figures 4 and 5
illustrate the loss distributions for the two index pools, and the patterns are very
similar although the iTraxx CDO tranches have been fitted much more closely
by the models than the CDX tranches.

It appears that the market-implied loss density crosses the Gaussian copula
standard model at three loss levels: the market assigns lower probability to zero
losses, higher probability to small-medium losses, lower probability to moderately
high losses, and higher probability to very high losses.

The fat upper tail on the market-implied loss distribution is also evident from
the low Gaussian copula spreads and high implied correlations for the most senior
tranches. The lower end of the distribution is more complicated. The standard
model tends to overvalue the spread on the second-loss mezzanine tranche (iTraxx
3-6%, CDX 3-7%). This indicates that the market assigns a relatively high prob-
ability mass to losses lower than, say, 3-4%. This is, however, only consistent
with the market price of the equity tranche, if the mass is skewed towards high
equity losses and low probability of no defaults.

We also note from the lower panels of the figures that the stochastic factor
loading copula, in the regime-switching version applied here, produces a bimodal
loss distribution, and therefore the sensitivity of mezzanine prices to the param-
eters of the model can be very unpredictable.

15This is referred to as compound correlations. This quotation device, however, suffers from
both existence and uniqueness problems, which are not encountered with Black-Scholes volatil-
ities. Tranche spreads are not monotone in compound correlation (except for equity tranches),
and we may observe arbitrage-free market prices that are not attainable by a choice of correla-
tion. An alternative quotation device is the so-called base correlations, defined as the implied
correlations on a sequence of hypothetical equity tranches consistent with the market prices
on the traded tranches. Base correlations are unique, since equity spreads are monotone, but
existence is still not guaranteed and they can be very difficult to interpret (Willemann (2004)
discusses some problems with base correlations).
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4 Conclusion

This paper illustrated a semi-analytical valuation method for basket credit deriva-
tives in a multivariate intensity-based model. Analytical solutions are important
for parameter estimation and calibration as well as for calculating sensitivities to
the single-name CDS quotes of the underlying reference entities. Furthermore,
even if simulation of cash flows is needed, e.g. in traditional cash CDOs with
path-dependent waterfalls or in CDO-squared or -cubed, the analytical methods
are still useful for variance reduction using control variate techniques. Analytical
solutions are particularly important in an intensity-based model, since simula-
tion of the model would require sampling of an entire intensity path for each
underlying entity – as opposed to copulas where a default time can be sampled
by drawing a single or a few random deviates depending on the relevant copula
family.

The model fits the market prices of synthetic CDOs reasonably well. In other
words, the model is able to generate pricing patterns fairly consistent with the
observed correlation skews. This allows for relative valuation of off-market corre-
lation products from benchmark products in a fully consistent model, and thereby
dispenses with the problematic interpolation schemes based on implied correla-
tions in the Gaussian copula, which are widely used in practice.

An interesting topic for future research is the hedging performance of the
alternative default correlation models proposed in the literature. A significant
amount of model risk is involved in the widespread delta-hedging of correlation
products – different models suggest different hedge ratios. More light may be shed
on this issue as the market matures and more market data become available.
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Appendix A: Affine jump-diffusions

This appendix reports two useful results for affine jump-diffusion processes. For
this type of process, Duffie, Pan, and Singleton (2000) derive closed-form solutions
– in terms of deterministic ordinary differential equations (ODEs) – to a wide
range of expectations relevant in e.g. derivatives pricing. In some cases the
ODEs have known explicit solutions.

This paper applies the basic affine sub-class, as defined by Duffie and Gârlea-
nu (2001). A basic affine process, which I denote x ∼ AJD(x0, κ, θ, σ, l, µ), is a
stochastic process following a stochastic differential equation

dxt = κ(θ − xt)dt + σ
√

xtdWt + dJt

initiated at x0, where W is a Wiener process and J is a pure-jump process,
independent of the Wiener process, with jump times from a Poisson distribution
with intensity l and jump sizes exponentially distributed with mean µ.

In the slightly more general class of affine processes, the volatility could have
a constant term under the square root and the jump intensity could be an affine
function of the state variable. This potentially added flexibility, however, seems
very small and does not warrant the additional complexity of estimating two more
parameters in an already rich model. Also, the jump size distribution need not be
exponential in the general class, but this ensures positive default intensities and
seems reasonable since most large jumps in credit spreads are positive. Moreover,
this jump specification allows for the explicit solution given below.

A.1 Default probabilities

The first result, used for computing default probabilities, is the following:

E
[
e−

∫ T
0 xsds

]
= eA(T ; κ,θ,σ,l,µ)+B(T ; κ,σ)x0 (29)

where

A(T ; κ, θ, σ, l, µ) =
κθγ

bc1d1

log
(c1 + d1e

bT

−γ

)
+

κθ

c1

T

+
l(ac2 − d2)

bc2d2

log
(c2 + d2e

bT

c2 + d2

)
+

l − c2l

c2

T

B(T ; κ, σ) =
1 − ebT

c1 + d1ebT

(30)
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with

γ =
√

κ2 + 2σ2

c1 = −(γ + κ)/2

d1 = c1 + κ

c2 = 1 − µ/c1

d2 = (d1 + µ)/c1

b = d1 + (κc1 − σ2)/γ

a = d1/c1

This expression is a special case of a more general formula in Duffie and Single-
ton (2003), Appendix A.5.

A.2 Characteristic functions

The second relevant expectation is used for computing the characteristic function
of an integrated AJD,

ϕ(u) = E
[
eiu

∫ T
0 xtdt

]
This is slightly outside the class of transforms covered in Duffie, Pan, and Single-
ton (2000), but the extension in the following proposition shows that the charac-
teristic function of an integrated AJD also is given by an exponential affine form.

Proposition 1: For a basic affine jump-diffusion process, x ∼ AJD(x0, κ, θ, σ, l, µ),

E
[
eiu

∫ T
0 xtdt

]
= eÃ(0; T,u,κ,θ,σ,l,µ)+B̃(0; T,u,κ,σ)x0 (31)

where Ã(t), B̃(t) : [0, T ] → C are complex-valued deterministic functions solving
the following set of ODEs:

Ã′
Re(t) = −κθB̃Re(t) −

lµ
[
B̃Re(t) − µB̃Re(t)

2 − µB̃Im(t)2
]

[1 − µB̃Re(t)]2 + µ2B̃Im(t)2

Ã′
Im(t) = −κθB̃Im(t) − lµB̃Im(t)

[1 − µB̃Re(t)]2 + µ2B̃Im(t)2

B̃′
Re(t) = κB̃Re(t) − σ2

2

[
B̃Re(t)

2 − B̃Im(t)2
]

B̃′
Im(t) = κB̃Im(t) − σ2B̃Re(t)B̃Im(t) − u

(32)

with boundary conditions ÃRe(T ) = ÃIm(T ) = B̃Re(T ) = B̃Im(T ) = 0. (For
notational simplicity, the dependence on T , u and the AJD parameters has been
suppressed in the ODEs.)

21



Proof: The proof is similar in spirit to the proof of Proposition 1 in Duffie,
Pan, and Singleton (2000). Recall that Zt =

∫ t

0
xs and define

Ψt := eÃ(t)+B̃(t)xt+iuZt

where Ã and B̃ are complex functions of time with boundary conditions Ã(T ) =
B̃(T ) = 0. If we can find such functions ensuring that Ψ is a martingale, we
know that

eÃ(0)+B̃(0)x0 = E
[
eÃ(T )+B̃(T )xT +iuZT ] = E[eiuZT ]

and we are done.
From the general version of Itô’s Lemma on Ψt = Ψ(t, xt, Zt), we have

ΨT − Ψ0 =

∫ T

0

µΨ(t, xt)Ψtdt +

∫ T

0

σΨ(t, xt)ΨtdWt + JΨ(T ) (33)

where

µΨ(t, x) = Ã′(t) + B̃′(t)x + B̃(t)κ(θ − x) + iux +
1

2
B̃(t)2σ2x

σΨ(t, x) = B̃(t)σ
√

x

JΨ(t) =
∑
s�t

Ψs − Ψs−

The second term on the right hand side of (33) is a martingale (the necessary
integrability condition on σΨ(t, x)Ψt is satisfied in the basic affine class).

Let H denote the stochastic jump size, and define the jump transform, h(·) :
C → C, by

h(c) := E
[
ecH

]
The jump size is exponentially distributed with mean µ. Thus,

h(c) =
1

µ

∫ ∞

0

evcRe+ivcIme−v/µdv

=
1

µ

∫ ∞

0

ev(cRe− 1
µ

)[cos(vcIm) + isin(vcIm)]dv

We shall evaluate the jump transform in c = B̃. We know B̃Re is a differentiable
function of time ending in zero at time T . Thus, for B̃Re to take on strictly
positive values, it would have to pass through zero with a negative slope. This
is impossible since at B̃Re(t) = 0 we have B̃′

Re(t) = σ2

2
B̃Im(t)2 � 0. Hence,

B̃Re(t) � 0 for t ∈ [0, T ].
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Knowing that cRe < 1/µ, we get

h(c) =
µ

(µcRe − 1)2 + µ2c2
Im

×
[
ev(cRe− 1

µ
)
{

(cRe − 1

µ
)cos(vcIm) + cImsin(vcIm)

+ i(cRe − 1

µ
)sin(vcIm) − icImcos(vcIm)

}]∞
v=0

=
(1 − µcRe) + iµcIm

(1 − µcRe)2 + µ2c2
Im

Define

g(t) := l
(
h(B̃(t)) − 1

)
Ψt

From Lemma 1, Appendix A, in Duffie, Pan, and Singleton (2000), JΨ(t) −∫ t

0
g(s)ds is a martingale (the necessary integrability condition on g(t) is satisfied

in the basic affine class).
Therefore, from (33), Ψ is a martingale if µΨ(t, x)Ψt = −g(t) for all (t, x).

Applying the matching principle, we see that this is fulfilled if

B̃′(t) − B̃(t)κ + iu +
1

2
B̃(t)2σ2 = 0

(from the x terms) and

Ã′(t) + B̃(t)κθ = −l
(
h(B̃(t)) − 1

)
These two complex ODEs can be written out as the four deterministic ODEs in
(32). �

Appendix B: Pricing Credit Default Swaps

This appendix gives a brief introduction to credit default swaps (CDSs). For
more details, refer to e.g. Duffie (1999) or Hull and White (2000).

A CDS is an insurance contract between two counterparties written on the
event of default of a third reference entity. In the event of default before maturity
of the contract, the protection seller pays the loss given default to the protection
buyer. That is, at default, the protection buyer delivers a defaulted bond to the
protection seller in return for face value.16 To compensate for that, the protection

16Often, the CDS contract offers the protection buyer a cheapest-to-deliver option – i.e. the
option to choose the delivered bond from a list of eligible bonds. This option has a non-negative
impact on the CDS premium (the value of the protection leg is potentially increased), but the
effect is small and, as in most studies, it is ignored in this paper. In recent empirical studies,
Guha (2003) and Acharya, Bharath, and Srinivasan (2004) find that the recovery values of
different bonds of a defaulted issuer usually are very similar across maturities and coupons.
This finding supports the assumption of recovery of face value at the time of default, and with
this assumption the delivery option is worthless.
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buyer pays fixed premium payments periodically until default or maturity of the
contract is reached.

Formally, with notation as in Sections 2 and 3, the value of the protection leg
in a T -year CDS is

Prot(0, T ) = E
[
e−

∫ τ
0 rsds1{τ�T}(1 − δ)

]

Suppose the CDS contract specifies that the premium, S, is paid in arrears at a
frequency f (i.e. f payments of S/f each year), typically quarterly. Premium
payments are made conditional on survival of the reference entity, and in the
event of default, an accrual premium payment is made for the period since the
previous payment date. Hence, the value of the premium leg is

Prem(0, T ; S) = E
[ Tf∑

j=1

e−
∫ tj
0 rsds1{τ>tj}

S

f
+ e−

∫ τ
0 rsds1{tj−1<τ�tj}S(τ − tj−1)

]

where tj = j/f for j = 1, . . . , fT .
With discretization and independence assumptions between recovery rates,

interest rates and default events as in Sections 2 and 3, the value of the protection
leg is

Prot(0, T ) = (1 − δ)

Tf∑
j=1

P (0, tj − 1

2f
)
[
Pr(τ � tj) − Pr(τ � tj−1)

]

Similarly, the value of the premium leg is

Prem(0, T ; S)

= S

Tf∑
j=1

1

f
P (0, tj)Pr(τ > tj) +

1

2f
P (0, tj − 1

2f
)
[
Pr(τ � tj) − Pr(τ � tj−1)

]

The fair CDS premium, S, is then given as the solution to Prem(0, T ; S) =
Prot(0, T ). In turn, given a CDS premium and a recovery rate, implied default
parameters can be found as the solution to the same equation.

Appendix C: Three copula models

For completeness, this appendix gives a very short outline of the three 1-factor
copula models used for comparison with the intensity model.

In all three copula models, default up to time t of entity i is defined as the
event that a default variable is below some default boundary, Xi � ci, where the
default variable is a linear combination of a market factor and an idiosyncratic
factor.
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The default boundary, ci, is derived from the marginal default probability
implied from single-name CDS spreads. This gives a loss distribution for the
horizon t. Loss distributions at different time horizons are build using the same
specification for the default variables, Xi, but using different default boundaries
(increasing with the horizon). The marginal default probabilities at different
horizons are obtained by backing out deterministic default intensities from CDS
spreads. In the copula application of this paper, a constant intensity is backed
out from the 5-year CDS spreads.

(i) In the 1-factor Gaussian copula, the default variable is defined as

Xi = aiZ +
√

1 − a2
i εi

where Z, ε1, . . . , εN are independent standard normal random variables and the
factor loadings are constant. The correlation between any pair of default vari-
ables, Xi and Xj, is then ρij = aiaj. For all the models in the comparison,
homogeneous correlation parameters are assumed across all entities, ρ = aiaj.
The conditional and unconditional default probabilities in the Gaussian copula
are given in terms of the standard normal distribution function.

(ii) In the stochastic factor loading copula, the default variable is defined as

Xi = ai(Z)Z + viεi + mi

again with independent standard normal common and idiosyncratic factors. The
factor loadings are stochastic, and vi and mi are constants chosen to ensure
zero mean and unit variance. This paper applies the tractable two-point regime
switching version with homogeneous correlations,

ai(Z) =

{ √
ρ1 for Z � ν√
ρ2 for Z < ν

The intuition is that correlations increase (ρ2 > ρ1) in bad states of the economy
(represented by Z < ν). The conditional and unconditional default probabilities
in this version of the model are still known in closed form. For more details, see
Andersen and Sidenius (2004).

(iii) In the double-t copula, the default variable is

Xi = ai
Z

std.dev.(Z)
+

√
1 − a2

i

εi

std.dev.(εi)

where the common and idiosyncratic factors follow t distributions with d degrees
of freedom and the loadings are constant. The homogeneous correlation between
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default variables is ρ = aiaj. For more details, see Hull and White (2004). The
conditional default probabilities are known from the t distribution. The default
boundaries, however, must be found by Monte Carlo simulation or numerical inte-
gration since the unconditional default probabilities are given by the distribution
of a sum of two t distributions, which is unknown (not a t distribution).
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Figure 2: Implied correlations from the market and the AJD model on the
5-year DJ iTraxx and CDX tranches. The market prices were obtained from
Bloomberg on August 23, 2004. The model prices are from the fitted AJD models with
parameters as listed in Tables 1 and 2 (calibrated to heterogeneous CDS spreads). The
implied correlations are calculated in a homogeneous Gaussian copula with an interest
rate of 3% and a recovery rate of 40%.
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Figure 3: Implied correlations from the market and the copula models on
the 5-year DJ iTraxx and CDX tranches. The market prices were obtained from
Bloomberg on August 23, 2004. The model prices are from the fitted double-t copula
and the fitted Gaussian copula with stochastic factor loadings with parameters as listed
in Tables 1 and 2 (calibrated to heterogeneous CDS spreads). The implied correlations
are calculated in a homogeneous Gaussian copula with an interest rate of 3% and a
recovery rate of 40%.
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Figure 4: 5-year loss distributions for the DJ iTraxx pool. The graphs display
probability functions for the loss percentage with support 0%, 0.48%, . . . , 60%, corre-
sponding to 0, 1, . . . , 125 defaults and recovery 40%. The expected loss is around 2.4%.
The upper panel focuses on the low-loss probabilities, and the lower panel, with log-
scale, shows the upper tail. The models have been calibrated to index tranche prices
with parameters as listed in Table 1 (the heterogeneous case).
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Figure 5: 5-year loss distributions for the DJ CDX pool. The graphs display
probability functions for the loss percentage with support 0%, 0.48%, . . . , 60%, corre-
sponding to 0, 1, . . . , 125 defaults and recovery 40%. The expected loss is around 3.9%.
The upper panel focuses on the low-loss probabilities, and the lower panel, with log-
scale, shows the upper tail. The models have been calibrated to index tranche prices
with parameters as listed in Table 2 (the heterogeneous case).
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