The Single Name Corporate CDS Market

Alan White
CDS Structure

Single Name

- **Buyer**
 - Notional $x \text{ [] bp p.a.}$
 - Credit Risk of ABC

- **Seller**

DJ Index Products

- **Buyer**
 - Delivery 10MM
 - Principal ABC Sr. Unsecured Debt
 - $10 MM Cash

- **Seller**
 - 125 Equally Weighted Names
Market Growth Notional Outstanding

- US Corp. Debt
- Global CDS
- CDS Index

Notional Outstanding:
- 0
- 1,000
- 2,000
- 3,000
- 4,000
- 5,000
- 6,000
- 7,000
CDX-IG Index Industry Composition

- Materials: 7.4%
- Consumer, Cyclicall: 18.9%
- Consumer, NonCyc.: 15.6%
- Energy: 4.9%
- Financial: 19.7%
- Industrial: 10.7%
- Tech.: 2.5%
- Comm.: 14.8%
- Utilities: 5.7%
End Users

Protection Sellers
- Banks: 38%
- Securities firms: 16%
- Hedge Funds: 15%
- Corporations: 2%
- Mutual Funds: 4%
- Other: 4%
- Insurance Companies: 20%

Protection Buyers
- Banks: 51%
- Securities firms: 16%
- Hedge Funds: 16%
- Corporations: 3%
- Mutual Funds: 3%
- Other: 3%
- Insurance Companies: 7%
Risk and Return
Corporate Bonds vs. CDS

ABC Corporate Bond Return

- Credit Risk
- Interest Rate Risk

ABC Corporate CDS

- Credit Risk
- Allows direct trading of credit risk
Arbitrage Trade

• Buy the bond, buy protection earn the risk-free rate of interest
• Make a riskless investment, sell protection earn the bond yield

⇒ CDS spread, $s ≈ y - r$

⇒ return on trade, $r ≈ y - s$
Comparing with Treasury and Swap Rates

<table>
<thead>
<tr>
<th>Rating</th>
<th>$r - r_T$ Mean</th>
<th>S.E.</th>
<th>$r - r_S$ Mean</th>
<th>S.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aaa / Aa</td>
<td>51.30</td>
<td>1.97</td>
<td>−9.55</td>
<td>1.31</td>
</tr>
<tr>
<td>A</td>
<td>64.33</td>
<td>1.82</td>
<td>−5.83</td>
<td>1.59</td>
</tr>
<tr>
<td>Baa</td>
<td>84.93</td>
<td>3.63</td>
<td>−2.21</td>
<td>2.79</td>
</tr>
<tr>
<td>All Ratings</td>
<td>62.97</td>
<td>1.38</td>
<td>−6.51</td>
<td>1.06</td>
</tr>
</tbody>
</table>
Ratings and CDS Spreads
CDS Spreads and Ratings Events

Conditioning on Ratings Event

Average CDS Spread Change (bp)

<table>
<thead>
<tr>
<th>Event</th>
<th>Window (days relative to event)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
</tr>
<tr>
<td>Downgrade</td>
<td>83</td>
</tr>
<tr>
<td>Review for Downgrade</td>
<td>114</td>
</tr>
<tr>
<td>Negative Outlook</td>
<td>69</td>
</tr>
</tbody>
</table>

* 5% significance
** 1% significance
CDS Spreads and Ratings Events
Conditioning on CDS Spread Changes

Percent of events in following 30 days in the subset of firms with the top p% of credit spreads

<table>
<thead>
<tr>
<th>p</th>
<th>Downgrade</th>
<th>Review for Downgrade</th>
<th>Negative Outlook</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>80**</td>
<td>72**</td>
<td>68**</td>
</tr>
<tr>
<td>25</td>
<td>59**</td>
<td>46**</td>
<td>48**</td>
</tr>
<tr>
<td>10</td>
<td>37**</td>
<td>28**</td>
<td>15</td>
</tr>
</tbody>
</table>

* 5% significance
** 1% significance
Recovery Rates and Probability of Default
CDS Structure

LGD = \(P(1 - R) \)

\[PD(1.75) - PD(1.50) \]
Extracting Hazard Rates – I

Fixed Recovery Model

- CDS value is the PV of payments weighted by the probability that the payment occurs
- Often set \(PD(t) = 1 - \exp(-\lambda t) \)
- Find the hazard rate \(\lambda \) that sets the CDS value to zero
- Implied \(\lambda \) is sensitive to assumed recovery rate, \(R \)
Implied Hazard Rate
CDS Spread = 50 bp

Recovery Rate
A Recovery Model
Hamilton, Varma, Ou, and Cantor 2005

Exhibit 10 – Correlation between Recovery Rates and Annual Default Rates, 1983-2004

Recovery Rate = 0.52 - 6.9* Default Rate

$R^2 = 0.6521$
Gaussian Copula

- Latent variable $x \sim N(0,1)$
- Conditioning on x

$$PD(t|x) = N \left[\frac{N^{-1}(PD(t)) - \sqrt{\rho}x}{\sqrt{1-\rho}} \right]$$

$$R \mid x = 0.52 - 6.9 \times N \left[\frac{N^{-1}(PD(1)) - \sqrt{\rho}x}{\sqrt{1-\rho}} \right]$$
Conditional 1-Year PD

Unconditional PD(1) = 0.02
Conditional Recovery Rate

Unconditional PD(1) = 0.02

<table>
<thead>
<tr>
<th>Rho</th>
<th>0.0001</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exp. Recovery</td>
<td>38.2%</td>
<td>38.4%</td>
<td>39.3%</td>
<td>40.5%</td>
</tr>
</tbody>
</table>

Probability

Rho = 0.0001
rho = 0.1
rho = 0.2
rho = 0.3
For CDS with spread \(s \), hazard rate \(\lambda \), copula correlation \(\rho \), and latent variable value \(x \), the probabilities of default are known and the conditional CDS value can be computed.

Integrating the conditional values over \(x \) produces the unconditional CDS value.

\(\lambda_{IC}(s, \rho) \) is the copula implied hazard rate,

\[
V_C(s, \lambda_{IC}(s, \rho), \rho) = 0
\]
Extracting Recovery Rates

- $E_C[R(\lambda, \rho)]$ is the expected recovery rate under the copula model found by integrating over the latent variable

- $R_{IF}(s, \lambda_{IC})$ is the implied fixed recovery rate based on the copula implied hazard rate
Copula Implied Hazard Rate

CDS spread = 50 bp
CDS spread = 200 bp
Recovery Rates

![Graph showing recovery rates with varying copula correlations and implied and expected recoveries for different values of s (50 and 200)]
Conclusion

• If CDS quotes reflect a recovery model in which probability of default and recovery are negatively related, and
• A fixed recovery rate model is used to infer probabilities of default
• The appropriate recovery rate needed to determine the probability of default is much lower than intuition would suggest