Liquidity, Liquidity Risk and Spreads: Some Results and Open Questions

Viral V Acharya
London Business School and Centre for Economic Policy Research (CEPR)

Third Annual Credit Risk Conference organized by Moody’s and Stern School of Business, New York University

16 May 2006
Outline

• Spread puzzle for corporate bonds
• Liquidity and liquidity risk
 ✓ Framework
 ✓ Measurement
 ✓ Examples
 ✓ Evidence
• Open questions
• Time-varying risk-premium
Spread Puzzle

- **Spread** - Difference between yields on corporate bonds and equivalent maturity treasuries is *too high*
 - Inconsistent with
 - Observed default rates and recoveries
 - Structural models of credit risk a la Merton (1973)
 - Huang and Huang (2005): AAA spread close to zero!
- **Changes in the spread** are not explained well
 - By changes in factors affecting credit risk
 - Collin-Dufresne, Goldstein and Martin (2001)
 - R² of 30% to 40% only, higher for lower-rated bonds
 - Unexplained portion appears to have a common factor
Preferred Explanations

- **Hedge ratios** from credit risk models are close to the empirically computed hedge ratios
 - Schaefer and Strebulaev (2004)
 - Unexplained portion thus most likely unrelated to credit risk

- **Liquidity and liquidity risk**
 - A burgeoning area of research but many open questions

- **Time-varying risk-premium**
 - A less commonly adopted approach but potentially important

- **Are these two explanations related?**
Liquidity and Liquidity Risk

• *A useful framework: Acharya-Pedersen (2005)*

\[
E_t(r^i_{t+1} - c^i_{t+1}) = r^f + \lambda_t \frac{\text{cov}_t(r^i_{t+1} - c^i_{t+1}, r^M_{t+1} - c^M_{t+1})}{\text{var}_t(r^M_{t+1} - c^M_{t+1})}
\]

- **Expected illiquidity:** \(E_t(c^i_{t+1}) \)
- **Liquidity risk(s):**
 \(\text{cov}_t(c^i_{t+1}, c^M_{t+1}) \)
 \(\text{cov}_t(c^i_{t+1}, r^M_{t+1}) \)
 \(\text{cov}_t(r^i_{t+1}, c^M_{t+1}) \)
- **Risk premium:**

\[
\lambda_t = E_t(r^M_{t+1} - c^M_{t+1} - r^f)
\]
Liquidity and Liquidity Risk

• A useful framework: Acharya-Pedersen (2005)

\[E_t(r^i_{t+1} - c^i_{t+1}) = r^f + \lambda_t \frac{\text{cov}_t(r^i_{t+1} - c^i_{t+1}, r^M_{t+1} - c^M_{t+1})}{\text{var}_t(r^M_{t+1} - c^M_{t+1})} \]

✓ Expected illiquidity: \(E_t(c^i_{t+1}) \)
✓ Liquidity risk(s): \(\text{cov}_t(c^i_{t+1}, c^M_{t+1}) \), \(\text{cov}_t(c^i_{t+1}, r^M_{t+1}) \)
✓ Risk premium: \(\lambda_t = E_t(r^M_{t+1} - c^M_{t+1} - r^f) \)
Liquidity and Liquidity Risk

- **A useful framework: Acharya-Pedersen (2005)**

\[
E_t(r^i_{t+1} - c^i_{t+1}) = r^f + \lambda_t \frac{\text{cov}_t(r^i_{t+1} - c^i_{t+1}, r^M_{t+1} - c^M_{t+1})}{\text{var}_t(r^M_{t+1} - c^M_{t+1})}
\]

- **Expected illiquidity:** \(E_t(c^i_{t+1}) \)
- **Liquidity risk(s):** \(\text{cov}_t(c^i_{t+1}, r^M_{t+1}) \)
- **Risk premium:** \(\lambda_t = E_t(r^M_{t+1} - c^M_{t+1} - r^f) \)
Liquidity and Liquidity Risk

\[
E_t(r_{t+1}^i - c_{t+1}^i) = r^f + \lambda_t \frac{\text{cov}_t(r_{t+1}^i - c_{t+1}^i, r_{t+1}^M - c_{t+1}^M)}{\text{var}_t(r_{t+1}^M - c_{t+1}^M)}
\]

✓ Expected illiquidity:

✓ Liquidity risk(s):

✓ Risk premium:

\[
\lambda_t = E_t(r_{t+1}^M - c_{t+1}^M - r^f)
\]
Bond Liquidity Measures

<table>
<thead>
<tr>
<th>One-way or round-trip cost (bid-ask spread)</th>
<th>Chen, Lesmond and Wei (2005), Goldstein, Hotchkiss and Sirri (2005)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency of zero returns and its variants</td>
<td>Lesmond, Ogden and Trzcinka (1999), Chen, Lesmond and Wei (2005)</td>
</tr>
<tr>
<td>Accessibility: Turnover of portfolios holding the bond</td>
<td>Chacko (2005), Chacko, Mahanti, Mallik and Subrahmanyam (2005)</td>
</tr>
</tbody>
</table>
Example: Trade Size

• From Goldstein, Hotchkiss and Sirri (2005): BBB bonds

 ✓ 2.35% for trades of 10 bonds, with a standard deviation of 4.33%
 • Comparable stocks: market capitalization of USD 50 million
 (Portfolio 22 out of 25 illiquidity-sorted portfolios)

 ✓ 0.45% for trades of >=1000 bonds, standard deviation of 1.04%
 • Comparable stocks: market capitalization of USD 250 million
 (Portfolio 13 out of 25 illiquidity-sorted portfolios)

• Suggests substantial illiquidity on average
Example: Cross-section

From Chen, Lesmond and Wei (2005):

<table>
<thead>
<tr>
<th>Liquidity & Yield Spreads</th>
<th>AAA</th>
<th>AA</th>
<th>A</th>
<th>BBB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zeros (%)</td>
<td>9.79</td>
<td>12.59</td>
<td>10.61</td>
<td>11.94</td>
</tr>
<tr>
<td>LOT (bp)</td>
<td>24.28</td>
<td>47.26</td>
<td>57.74</td>
<td>70.29</td>
</tr>
<tr>
<td>Yield Spread (bp)</td>
<td>82.44</td>
<td>146.24</td>
<td>177.68</td>
<td>277.45</td>
</tr>
<tr>
<td>N</td>
<td>49</td>
<td>120</td>
<td>539</td>
<td>730</td>
</tr>
<tr>
<td>Zeros (%)</td>
<td>10.36</td>
<td>8.34</td>
<td>6.62</td>
<td>8.91</td>
</tr>
<tr>
<td>LOT (bp)</td>
<td>25.00</td>
<td>36.17</td>
<td>36.82</td>
<td>51.45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S&P Credit Ranking</th>
</tr>
</thead>
<tbody>
<tr>
<td>BB</td>
</tr>
<tr>
<td>259.34</td>
</tr>
<tr>
<td>566.53</td>
</tr>
<tr>
<td>152</td>
</tr>
<tr>
<td>42.40</td>
</tr>
<tr>
<td>266.11</td>
</tr>
<tr>
<td>54.65</td>
</tr>
<tr>
<td>497.45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Yield Spread (bp)</th>
<th>70.65</th>
<th>129.02</th>
<th>154.19</th>
<th>251.68</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>37</td>
<td>67</td>
<td>386</td>
<td>394</td>
</tr>
<tr>
<td>Bid-Ask (bp)</td>
<td>49.52</td>
<td>36.57</td>
<td>38.20</td>
<td>44.22</td>
</tr>
<tr>
<td>Yield Spread (bp)</td>
<td>70.65</td>
<td>129.02</td>
<td>154.19</td>
<td>251.68</td>
</tr>
<tr>
<td>N</td>
<td>37</td>
<td>67</td>
<td>386</td>
<td>394</td>
</tr>
</tbody>
</table>
Liquidity and Spreads

• Chen, Lesmond and Wei (2005): \(E_t(c_{t+1}^i) \)

• *Cross-sectional* regressions:
 ✓ Investment grade bonds:
 • 1 bp bid-ask implies 0.42 bp increase in spread, \(R^2 = 7\% \)
 ✓ Speculative grade bonds:
 • 1 bp bid-ask implies 2.3 bp increase in spread, \(R^2 = 22\% \)

• *Time-series* regressions: Similar effects

• Do we expect the effect of bid-ask to be *so large*?
Liquidity and Liquidity Risk

• **Recall**

\[
E_t(r_{t+1}^i - c_{t+1}^i) = r_f^i + \lambda_t \frac{\text{cov}_t(r_{t+1}^i - c_{t+1}^i, r_{t+1}^M - c_{t+1}^M)}{\text{var}_t(r_{t+1}^M - c_{t+1}^M)}
\]

✓ **Expected illiquidity:**

✓ **Liquidity risk(s):**

✓ **Risk premium:**

\[
\lambda_t = E_t(r_{t+1}^M - c_{t+1}^M - r_f^i)
\]
Measurement of Liquidity Risk

- Exposure of bond returns to liquidity risk: \(\text{cov}_t(r^i_{t+1}, c^M_{t+1}) \)
 - **Corporate bond-market factor**
 - Of high minus low liquidity portfolio returns
 - Downing, Underwood and Xing (2005)
 - Chacko (2005)
 - **Equity-market liquidity fluctuations**
 - de Jong and Driessen (2005)
 - **Treasury-market liquidity fluctuations**
 - Longstaff, Mithal and Neis (2004), de Jong and Driessen (2005)
Liquidity Risk and Spreads

• Credit, interest rate, and liquidity risks *correlated*

• Downing, Underwood and Xing (2005):
 ✓ *Liquidity risk* adds 15% in explaining bond returns

• Chacko (2005): *Alphas* on liquidity risk portfolios

• de Jong and Driessen (2005):
 ✓ One standard deviation *shock in stock market and treasury liquidity* each changes bond returns by 0.3%
 ✓ Contribute 45 bps to spread for investment grade bonds
 100 bps for (some) speculative grade bonds
Figure 3: Illiquidity measure for US government bond market and credit spread

10-Year Bond: Bid-Ask Spread and Avg. Credit Spread

Credit spread: average across rating categories

Bid-ask spread: 10-yr gov't bond

The graph shows the bid-ask spread on 10-year US government bonds, and, for comparison, the average credit spread across all US indices.
Open Questions

• Evidence of **liquidity** and **liquidity risk** effects on bond spreads consistent and compelling

• **But are the effects distinct from each other?**
 - Liquidity studies do not control for liquidity risk, and vice-versa
 - **Illiquidity and liquidity risk are highly correlated**
 - Acharya and Pedersen (2005)

• Illiquidity effect should be $1 / \text{Holding Period (yrs)}$
• Other forms of liquidity risk may be important

\[
\text{cov}_t(c_{t+1}^i, c_{t+1}^M) \quad \text{cov}_t(c_{t+1}^i, r_{t+1}^M)
\]
Open Questions (continued)

- How does the evidence on liquidity and liquidity risk relate to the time-series spread puzzle?
- Is the *common factor in residuals* from Collin-Dufresne, Goldstein and Martin (2001) closely related to a *liquidity risk factor*?
 - Chen, Lesmond and Wei (2005) relate bond spread changes to liquidity changes for that bond
 - Commonality in liquidity changes? $\text{cov}_t(c^d_{t+1}, c^M_{t+1})$
 - Is liquidity risk time-varying?
Time-varying Risk-premium

- Two views: \(\lambda_t = E_t(r_{t+1}^M - c_{t+1}^M - r_f^M) \)

- **Risk-premium common across equities and bonds**
 - Chen, Collin-Dufresne and Goldstein (2005)
 - Pricing kernel from habit-formation models helps explain/fit the BBB-AAA spread
 - BBB-AAA: *credit* spread, AAA-Tsy: *liquidity* spread

- **Risk-premium in bonds due to market segmentation**
 - Lack of capital mobility into bond markets upon common shocks to banks and financial institutions
 - Example: GM and Ford downgrade in May 2005
 - Bond-market *liquidity risk* should capture this: Does it?
Figure 1: Estimated actual and risk-neutral 1-year default probabilities for Disney.
Conclusion

- Much has been accomplished over the past year
 - Measuring corporate bond market liquidity
 - Quantifying the liquidity risk of corporate bonds
 - Relating liquidity and liquidity risk to spreads
- Much remains to be done
 - Isolating effects of liquidity and liquidity risk
 - Relating these effects to time-series of spread changes
 - Understanding their relationship with time-varying risk-premium