Liquidity Risk of Corporate Bond Returns
(Preliminary and Incomplete)

Viral V Acharya
London Business School and Centre for Economic Policy Research (CEPR)

(joint with Yakov Amihud and Sreedhar Bharath)

Fifth Annual Credit Risk Conference organized by Moody’s and Stern School of Business, New York University

14 May 2008
Outline

- Explaining corporate bond returns
- Liquidity risk
 - Framework
 - Data
 - Regime switch in liquidity betas
 - Nature of regimes
- Interpretation of results
- Relationship to results for stocks
- Conclusions

Viral V. Acharya - Moody's/NYU Credit Risk Conference 2008
Explaining bond returns/spreads

- **Changes in the spread** are not explained well
 - By changes in factors affecting credit risk
 - Collin-Dufresne, Goldstein and Martin (2001)
 - R^2 of 30% to 40% only, higher for lower-rated bonds
 - Unexplained portion appears to have a common factor

- **Hedge ratios** from credit risk models are close to the empirically computed hedge ratios
 - Schaefer and Strebulaev (2006)
 - Unexplained portion thus most likely unrelated to credit risk

Viral V. Acharya - Moody's/NYU Credit Risk Conference 2008
Possible explanations

- **Liquidity and liquidity risk**
 - A burgeoning area of research but many open questions

- **Time-varying risk-premium**
 - A less commonly adopted approach but potentially important

- **This paper:**
 - Liquidity risk
 - Time-varying liquidity risk
 - Interpretation: Time-varying (liquidity) risk premium
Liquidity risk

• Framework based on

• Controls for interest rate and default risk
 ✓ Fama and French (1993), Schaefer and Strebulaev (2006)

\[
R_{j,t} = \alpha_j + \beta_{j,T} \times \text{Term} + \beta_{j,D} \times \text{Def}
+ (\beta_{j,I} \times \text{Illiqinnov} + \beta_{j,BI} \times \text{Bondilliqinnov} + \epsilon_{j,t})
\]

• **Regime-switching analysis of betas**
 ✓ Hamilton (1994)
Corporate bond returns

- **Lehman Brothers Fixed Income Database**
- **NAIC**: 1994 - 2005
- High intersection in the overlapping period
- Elimination criteria:
 - Matrix prices
 - Special features
 - Not in Lehman Brothers bond indices
- **Term**: Long-term govt minus one-year govt
- **Def**: Value-wtd market of all corp bonds > 10yrs
 - Also use firm-level equity returns (Schaefer, Strebulaev (2006))
IG and Junk bond returns

Viral V. Acharya - Moody's/NYU Credit Risk Conference 2008
Viral V. Acharya - Moody's/NYU Credit Risk Conference 2008
Measurement of liquidity risk

• **Equity-market liquidity fluctuations**
 - Illiqinnov: AR(2) innovations in equally-weighted, monthly (average of daily) price-impact measure ILLIQ of Amihud (2002)
 - Acharya and Pedersen (2005), de Jong, Driessen (2005)

• **Treasury-market liquidity fluctuations**
 - Bondilliqinnov: First difference in the monthly quoted % bid-ask on off-the-run treasuries, equally-weighted across maturities

• **Corporate bond-market factor**
 - Downing, Underwood and Xing (2005), Chacko (2005)
 - Limited data prevents significant time-series analysis

Viral V. Acharya - Moody's/NYU Credit Risk Conference 2008
Illiqinnov and Bondilliqinnov

High volatility

Illiquidity Innovations

High volatility

Viral V. Acharya - Moody's/NYU Credit Risk Conference 2008
Correlation amongst risk factors

<table>
<thead>
<tr>
<th></th>
<th>TERM</th>
<th>DEFAULT</th>
<th>ILLIQINNOV</th>
<th>BONDILLIQINNOV</th>
</tr>
</thead>
<tbody>
<tr>
<td>TERM</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEF</td>
<td>-0.3816</td>
<td>1</td>
<td>-0.0705</td>
<td></td>
</tr>
<tr>
<td>ILLIQINNOV</td>
<td>-0.0146</td>
<td>-0.0705</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>BONDILLIQINNOV</td>
<td>-0.0916</td>
<td>-0.1273</td>
<td>0.1117</td>
<td>1</td>
</tr>
</tbody>
</table>

Viral V. Acharya - Moody's/NYU Credit Risk Conference 2008
Unconditional liquidity risk

<table>
<thead>
<tr>
<th>Rating</th>
<th>α</th>
<th>β_t</th>
<th>β_d</th>
<th>β_i</th>
<th>β_{bi}</th>
<th>Adj-Rsq</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAA</td>
<td>56.34</td>
<td>47.48</td>
<td>21.96</td>
<td>-31.80</td>
<td>-596.97</td>
<td>0.60</td>
</tr>
<tr>
<td>AA</td>
<td>58.80</td>
<td>56.52</td>
<td>45.04</td>
<td>-49.30</td>
<td>-1371.50</td>
<td>0.76</td>
</tr>
<tr>
<td>A</td>
<td>93.10</td>
<td>58.82</td>
<td>56.37</td>
<td>-74.67</td>
<td>-448.04</td>
<td>0.27</td>
</tr>
<tr>
<td>BBB</td>
<td>84.34</td>
<td>60.16</td>
<td>84.23</td>
<td>-46.07</td>
<td>-305.24</td>
<td>0.38</td>
</tr>
<tr>
<td>BB</td>
<td>96.92</td>
<td>46.66</td>
<td>41.62</td>
<td>-184.17</td>
<td>-2166.04</td>
<td>0.16</td>
</tr>
<tr>
<td>B</td>
<td>96.55</td>
<td>42.17</td>
<td>66.59</td>
<td>-155.02</td>
<td>-2555.24</td>
<td>0.22</td>
</tr>
<tr>
<td>CCC & below</td>
<td>145.32</td>
<td>21.04</td>
<td>48.41</td>
<td>-337.70</td>
<td>-5802.63</td>
<td>0.09</td>
</tr>
<tr>
<td>Unrated</td>
<td>76.37</td>
<td>36.91</td>
<td>27.37</td>
<td>-149.36</td>
<td>-1652.47</td>
<td>0.12</td>
</tr>
</tbody>
</table>
Economic magnitude small

- **IG and Junk differences significant, except for Def**

<table>
<thead>
<tr>
<th>Rating</th>
<th>(\sigma_t)</th>
<th>(\sigma_d)</th>
<th>(\sigma_i)</th>
<th>(\sigma_{bi})</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAA</td>
<td>82%</td>
<td>23%</td>
<td>4%</td>
<td>4%</td>
</tr>
<tr>
<td>AA</td>
<td>91%</td>
<td>43%</td>
<td>6%</td>
<td>8%</td>
</tr>
<tr>
<td>A</td>
<td>56%</td>
<td>32%</td>
<td>6%</td>
<td>2%</td>
</tr>
<tr>
<td>BBB</td>
<td>60%</td>
<td>50%</td>
<td>4%</td>
<td>1%</td>
</tr>
<tr>
<td>BB</td>
<td>41%</td>
<td>22%</td>
<td>13%</td>
<td>7%</td>
</tr>
<tr>
<td>B</td>
<td>41%</td>
<td>38%</td>
<td>12%</td>
<td>9%</td>
</tr>
<tr>
<td>CCC and Below</td>
<td>15%</td>
<td>20%</td>
<td>18%</td>
<td>15%</td>
</tr>
<tr>
<td>Unrated</td>
<td>36%</td>
<td>16%</td>
<td>11%</td>
<td>6%</td>
</tr>
</tbody>
</table>

- **IG**: Effect of liquidity risk of the order of 10 bps in returns
- **Junk**: 30 bps in returns (smaller than de Jong, Driessen)

Viral V. Acharya - Moody's/NYU Credit Risk Conference 2008
Time-varying betas

- **Estimate a Markov regime-switching model**
 - Regime-shift absent in IG, but strong in Junk betas

Regime 1:
\[R_{Junk, t} = \alpha_{Junk}^1 + \beta_{Junk, T}^1 \text{Term}_t + \beta_{Junk, D}^1 \text{Def}_t + \beta_{Junk, I}^1 \text{IlliqInnov}_t + \beta_{Junk, BI}^1 \text{BondilliqInnov}_t + \epsilon_{Junk, t}^1 \]

Regime 2:
\[R_{Junk, t} = \alpha_{Junk}^2 + \beta_{Junk, T}^2 \text{Term}_t + \beta_{Junk, D}^2 \text{Def}_t + \beta_{Junk, I}^2 \text{IlliqInnov}_t + \beta_{Junk, BI}^2 \text{BondilliqInnov}_t + \epsilon_{Junk, t}^2 \]

Markov switching probability for state transition:

\[P(s_t = 1 \mid s_{t-1} = 1) = p \]
\[P(s_t = 2 \mid s_{t-1} = 2) = q \]
Liquidity beta changes substantially

<table>
<thead>
<tr>
<th>Junk Grade</th>
<th>Regime 1</th>
<th></th>
<th>Regime 2</th>
<th></th>
<th>Parameters</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coeff</td>
<td>t-stat</td>
<td>Coeff</td>
<td>t-stat</td>
<td>p</td>
<td>q</td>
</tr>
<tr>
<td>Constant</td>
<td>81.61</td>
<td>9.91</td>
<td>196.22</td>
<td>6.38</td>
<td>0.974</td>
<td></td>
</tr>
<tr>
<td>Term</td>
<td>41.11</td>
<td>10.33</td>
<td>40.76</td>
<td>3.01</td>
<td>0.932</td>
<td></td>
</tr>
<tr>
<td>Def</td>
<td>60.09</td>
<td>7.13</td>
<td>58.16</td>
<td>3.89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illiqinnov</td>
<td>-81.05</td>
<td>-1.81</td>
<td>-619.69</td>
<td>-5.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bondilliqinnov</td>
<td>-1355.63</td>
<td>-18.31</td>
<td>-4147.74</td>
<td>-35.94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_i</td>
<td>119.91</td>
<td></td>
<td>320.22</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Wald tests for differences in coefficients between Regime 1 and Regime 2

<table>
<thead>
<tr>
<th></th>
<th>Chi-Sq</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term</td>
<td>6.30</td>
<td>0.012</td>
</tr>
<tr>
<td>Def</td>
<td>4.82</td>
<td>0.028</td>
</tr>
<tr>
<td>Illiqinnov</td>
<td>28.54</td>
<td>0.000</td>
</tr>
<tr>
<td>Bondilliqinnov</td>
<td>458.22</td>
<td>0.000</td>
</tr>
<tr>
<td>Log Likelihood</td>
<td>-2412.83</td>
<td></td>
</tr>
<tr>
<td>Sample Period</td>
<td>1973:01 - 2005:12</td>
<td></td>
</tr>
</tbody>
</table>
Regime (weakly) linked to recession
High liquidity risk ("stress") regime

- **Striking characteristics:**
 - IG and Junk bond returns more variable
 - Stock-market illiquidity shocks more skewed
 - Treasury illiquidity more variable
 - Stock and treasury illiquidity more correlated

- **Relationship to macroeconomic factors:**
 - Positively linked to
 - *Recession:* NBER, Stock and Watson, Hamilton
 - *Downturn in stock markets*
 - *MKMV aggregate EDF*

- 57% likelihood of switching out in a year
Economic magnitude *large*

- **Is higher volatility driving higher betas?**
 - Correlations with liquidity factors increase too

- **Effect of liquidity risk magnifies three-four times**
 - Little shift in effect of *Term* and *Def*

<table>
<thead>
<tr>
<th>Regime 1</th>
<th>Coeff</th>
<th>σ</th>
<th>Coeff * σ</th>
<th>Return</th>
</tr>
</thead>
<tbody>
<tr>
<td>Return</td>
<td>149.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junk * Term</td>
<td>41.11</td>
<td>2.32</td>
<td>64%</td>
<td></td>
</tr>
<tr>
<td>Junk * Default</td>
<td>60.09</td>
<td>1.17</td>
<td>47%</td>
<td></td>
</tr>
<tr>
<td>Junk * Illiqinnov</td>
<td>-81.05</td>
<td>0.1962</td>
<td>11%</td>
<td></td>
</tr>
<tr>
<td>Junk * Bondilliqinnov</td>
<td>-1355.63</td>
<td>0.0074</td>
<td>7%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Regime 2</th>
<th>Coeff</th>
<th>σ</th>
<th>Coeff * σ</th>
<th>Return</th>
</tr>
</thead>
<tbody>
<tr>
<td>Return</td>
<td>214.76</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junk * Term</td>
<td>40.76</td>
<td>2.42</td>
<td>46%</td>
<td></td>
</tr>
<tr>
<td>Junk * Default</td>
<td>58.16</td>
<td>2.18</td>
<td>59%</td>
<td></td>
</tr>
<tr>
<td>Junk * Illiqinnov</td>
<td>-619.69</td>
<td>0.135</td>
<td>39%</td>
<td></td>
</tr>
<tr>
<td>Junk * Bondilliqinnov</td>
<td>-4147.74</td>
<td>0.01102</td>
<td>21%</td>
<td></td>
</tr>
</tbody>
</table>

10-16 bps in returns
80-150 bps in returns
Robustness checks

• **Controlling for changes in expected cash flows**
 - Default likelihood: MKMV’s aggregate EDF
 - LGD: Altman et al’s aggregate recovery fn (agg EDF)
 - *Little effect*

• **Controlling for changes in (equity-mkt) volatility**
 - *Little effect*

• **Schaefer-Strebulaev (2006) model**
 - Average firm-level equity return as *Def*
 - *Liquidity betas remain strong in stress regime*
 - *Term and Def betas even less significant than before*
Regime-shift with SS (2006) model

<table>
<thead>
<tr>
<th>Junk Grade</th>
<th>Regime 1</th>
<th>Regime 2</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coeff</td>
<td>t-stat</td>
<td>Coeff</td>
</tr>
<tr>
<td>Constant</td>
<td>60.72</td>
<td>2.69</td>
<td>55.81</td>
</tr>
<tr>
<td>Term</td>
<td>29.27</td>
<td>10.56</td>
<td>3.67</td>
</tr>
<tr>
<td>Def</td>
<td>92.47</td>
<td>2.09</td>
<td>13.62</td>
</tr>
<tr>
<td>Illiqinnov</td>
<td>-106.68</td>
<td>-0.72</td>
<td>-581.58</td>
</tr>
<tr>
<td>Bondilliqinnov</td>
<td>-2168.89</td>
<td>-2.81</td>
<td>-5231.23</td>
</tr>
<tr>
<td>σ_i</td>
<td>91.19</td>
<td></td>
<td>285.75</td>
</tr>
</tbody>
</table>
Relationship to liquidity risk of stocks

• **Acharya and Pedersen (2005)**
 - Illiquid stocks are also more liquidity risky
 - This paper: Junk bonds are more illiquid and liquidity risky than IG bonds (also de Jong, Driessen 2005)
 - Additional: Liquidity risk is time-varying and economically substantial primarily in stress periods

• **Watanabe and Watanabe (2007)**
 - Stock betas on $ILLIQ$ innovations also show regimes
 - Regimes correspond to high and low $ILLIQ$
 - This paper: Provides a similar result for junk bonds
 - Liquidity risk is priced more in cross-section in stress
Treasury market (il)liquidity

Source: Goyenko (2005)
Stock market effective tick size

High trading cost

Source: Goyenko (2005)

Viral V. Acharya - Moody's/NYU Credit Risk Conference 2008
Interpretation

• Beta = Cash flow beta + Expected return beta
• For corporate bonds, cash flow beta should be small (controlled)

• Higher liquidity beta in stress (high volatility) regime
 -> Higher beta of expected return on liquidity risks,
 But not so for interest rate and default risks

• “Flight to quality/liquidity”
 ✓ Effect of market liquidity on (junk bond) risk premium

• How does this relate to the risk-premium being apparently common across equities and bonds?
 ✓ Chen, Collin-Dufresne, Goldstein (2005): Habit pricing kernel
 • BBB-AAA: credit spread, AAA-Tsy: liquidity spread

Viral V. Acharya - Moody's/NYU Credit Risk Conference 2008
Conclusion

• Much has been accomplished over the past few years
 ✓ Measuring corporate bond market liquidity
 ✓ Quantifying the liquidity risk of corporate bonds
 ✓ Relating liquidity and liquidity risk to spreads

• Our paper:
 ✓ Focused on time-varying liquidity risk of corporate bonds
 ✓ Evidence for time-varying liquidity betas for junk bonds
 ✓ Consistent with “flight to quality/liquidity” in volatile/stress periods
 ✓ Conditional liquidity risk effects large, unconditional effects small

• Much remains to be done…
 ✓ Relating these effects to time-series of spread changes
 ✓ Differentiating fully liquidity risk premium from the usual one
 ✓ Identifying “stress” periods in corporate bond market liquidity

Viral V. Acharya - Moody's/NYU Credit Risk Conference 2008
Corporate bond liquidity measures

One-way or round-trip cost (bid-ask spread)	Chen, Lesmond and Wei (2005), Goldstein, Hotchkiss and Sirri (2005)
Frequency of zero returns and its variants	Lesmond, Ogden and Trzcinka (1999), Chen, Lesmond and Wei (2005)
Accessibility: Turnover of portfolios holding the bond	Chacko (2005), Chacko, Mahanti, Mallik and Subrahmanyam (2005)