Dynamic Models of Portfolio Credit Risk: A Simplified Approach

John Hull and Alan White
Portfolio Credit Derivatives

- Key product is a CDO
- Protection seller agrees to insure all losses on the portfolio that are between $X\%$ and $Y\%$ of the portfolio principal for life of contract (e.g. 5 yrs)
- Initial tranche principal is $(Y-X)\%$ of the portfolio principal
- Protection buyer pays a spread on the remaining tranche principal periodically (e.g. at the each quarter)
- Tranches of standard portfolios (iTraxx, CDX IG, etc) trade very actively
CDO models

- Standard market model is one-factor Gaussian copula model of time to default
- Alternatives that have been proposed: t-, double-t, Clayton, Archimedian, Marshall Olkin, implied copula
- All are static models. They provide a probability distribution for the loss over the life of the model, but do not describe how the loss evolves
Dynamic Models for Portfolio Losses: Prior Research

- **Structural**: Albanese et al; Baxter (2006); Hull et al (2005)
- **Reduced Form**: Duffie and Gârleanu (2001), Chapovsky et al (2006), Graziano and Rogers (2005), Hurd and Kuznetsov (2005), and Joshi and Stacey (2006)
Our Objective

- Build a simple dynamic model of the evolution of losses that is easy to implement and easy to calibrate to market data
- The model is developed as a reduced form model, but can also be presented as a top down model
CDO Valuation

- Key to valuing a CDO lies in the calculation of expected principal on payment dates
 - Expected payment on a payment date equals spread times expected principal on that date
 - Expected payoff between payment dates equals reduction in expected principal between the dates
 - Expected accrual payments can be calculated from expected payoffs
- Expected principal can be calculated from the cumulative default probabilities and recovery rates of companies in the portfolio
The Model (Homogeneous Case)

\[dQ = \mu dt + dq \]

where \(Q \) is the an obligor’s cumulative default probability and \(dq \) represents a jump that has intensity \(\lambda \) and jump size \(h \)

\[Q \quad \lambda \Delta t \quad 1-\lambda \Delta t \]

\[Q + \mu \Delta t \quad Q + \mu \Delta t + h \]

\(\mu \) and \(\lambda \) are functions only of time and \(h \) is a function of the number of jumps so far. \(\mu > 0, \ h > 0, \) and \(Q \) is set equal to the minimum of 1 and the value given by the process
Implementation of Model

- Instruments such as CDOs, forward CDOs, and options on CDOs can be valued analytically.
- Model can be represented as a binomial tree to value other more complicated structures such as leveraged super seniors with loss triggers.
Illustrative Data

Table 1
iTraxx CDO tranche quotes December 4, 2006.

<table>
<thead>
<tr>
<th>a_L</th>
<th>a_H</th>
<th>3 yr</th>
<th>5 yr</th>
<th>7 yr</th>
<th>10 yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.03</td>
<td>n/a</td>
<td>12.38</td>
<td>27.00</td>
<td>40.75</td>
</tr>
<tr>
<td>0.03</td>
<td>0.06</td>
<td>n/a</td>
<td>56.00</td>
<td>135.00</td>
<td>337.00</td>
</tr>
<tr>
<td>0.06</td>
<td>0.09</td>
<td>n/a</td>
<td>14.00</td>
<td>37.00</td>
<td>99.00</td>
</tr>
<tr>
<td>0.09</td>
<td>0.12</td>
<td>n/a</td>
<td>5.00</td>
<td>18.00</td>
<td>42.00</td>
</tr>
<tr>
<td>0.12</td>
<td>0.22</td>
<td>n/a</td>
<td>2.00</td>
<td>5.50</td>
<td>14.00</td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td>12.69</td>
<td>24.75</td>
<td>32.83</td>
<td>43.59</td>
</tr>
</tbody>
</table>
Simplest Version of Model

- Jump size is constant and $\mu(t)$, is zero
- Jump intensity, $\lambda(t)$ is chosen to match the term structure of CDS spreads
- There is then a one-to-one correspondence between tranche quotes and jump size
- Implied jump sizes are similar to implied correlations
Comparison of Implied Jump Sizes with Implied Tranche Correlations

5-Year Quotes

7-Year Quotes

10-Year Quotes

Copyright © John Hull and Alan White, 2007
More Complex versions of the model.

$\alpha(t) = \mu(t)/\mu_{\text{max}}(t)$. In all cases $\lambda(t)$ is chosen to fit CDS term structure.

- Constant $\alpha(t)$, constant jumps
- Constant $\alpha(t)$, size of Jth jump, $h_J = h_0e^{\beta J}$. This provides a good fits to all tranches for a particular maturity.
- $\alpha(t)$ linear function of time, size of Jth jump, $h_J = h_0e^{\beta J}$. This provides a good fit to all tranches for all maturities.
Variation of best fit h_0 and β across time

Jump Parameters

$- h_0 \times 1,000$ β

4-Jul-06 3-Aug-06 2-Sep-06 2-Oct-06 1-Nov-06 1-Dec-06 31-Dec-06
Variation of best fit $\alpha(0)$ and $\alpha(10)$ across time
Evolution of Loss Distribution on Dec 4, 2006 for 4 parameter model.

Unconditional Loss Distribution at 4 Maturities

Probabilities for losses greater than 9% multiplied by 100.
Conclusions

- It is possible to develop a simple dynamic model for losses on a portfolio by modeling the cumulative default probability for a representative company.
- The only way of fitting the market appears to be by assuming that jumps in the cumulative default probability get progressively bigger.