Asset Trading and Valuation with Uncertain Exposure

Juan Carlos Hatchondo
Richmond Fed

Per Krusell
IIES & Princeton

Martin Schneider
Stanford
Motivation

• “Well functioning financial markets”
 – prices aggregate dispersed information...
 – agents efficiently share exposure to aggregate risk
Motivation

• With complete markets & agreement among agents
 – individual risk exposures equated in equilibrium...
 – ... to aggregate exposure of representative agent...
 – ... which determines risk premia
Defining exposure

• With complete markets & agreement among agents
 – individual risk exposures equated in equilibrium...
 – ... to aggregate exposure of representative agent...
 – ... which determines risk premia

• \(X_{t+1} = \) asset payoff,
• \(M^i_{t+1} = \) agent \(i \)'s intertemporal MRS \(t + 1 \) vs \(t = \) “relative hunger”
• \(-M^i_{t+1} = \) “relative pleasure”

• exposure of agent \(i \) to risk \(X_{t+1} \) := \[
\frac{cov_t(-M^i_{t+1}, X_{t+1})}{var_t(X_{t+1})}
\]

(positive exposure to \(X \ = \) “more pleasure when \(X \) is high”)
Defining exposure

- With complete markets & agreement among agents
 - individual risk exposures equated in equilibrium...
 - ... to aggregate exposure of representative agent...
 - ... which determines risk premia

- $X_{t+1} = \text{asset payoff,}$
- $M^i_{t+1} = \text{agent } i\text{'s intertemporal MRS } t + 1 \text{ vs } t = \text{“relative hunger”}$
- $-M^i_{t+1} = \text{“relative pleasure”}$

- exposure of agent i to risk X_{t+1} := \[\frac{\text{cov}_t(-M^i_{t+1}, X_{t+1})}{\text{var}_t(X_{t+1})} \]
 (positive exposure to $X = \text{“more pleasure when } X \text{ is high”}$)

- Euler equations with complete markets & agreement
 \[P_t = \frac{1}{R_t}E_t[X_{t+1}] \quad - \quad \{ \text{cov}_t \left(-M^i_{t+1}, X_{t+1} \right) \} \]
 discounted expected payoff risk premium
Defining exposure

- With complete markets & agreement among agents
 - individual risk exposures equated in equilibrium...
 - ... to aggregate exposure of representative agent...
 - ... which determines risk premia

- $X_{t+1} = \text{asset payoff}$,
- $M_{t+1}^i = \text{agent } i\text{'s intertemporal MRS } t+1 \text{ vs } t = \text{“relative hunger”}$
- $-M_{t+1}^i = \text{“relative pleasure”}$

- exposure of agent i to risk $X_{t+1} := \frac{\text{cov}_t(-M_{t+1}^i, X_{t+1})}{\text{var}_t(X_{t+1})}$
 (positive exposure to $X = \text{“more pleasure when } X \text{ high”}$)

- Euler equations with complete markets & agreement

$$P_t = \frac{1}{R_t} E_t[X_{t+1}] - \text{var}_t(X_{t+1}) \left\{ \frac{\text{cov}_t(-M_{t+1}^i, X_{t+1})}{\text{var}_t(X_{t+1})} \right\}$$

discounted expected payoff

payoff risk

exposure
Motivation

- With complete markets & agreement among agents
 - individual risk exposures equated in equilibrium...
 - ... to aggregate exposure of representative agent...
 - ... which determines risk premia

- This paper
 - news about aggregate exposure arrive as dispersed information
 - agents see only initial individual exposures ...
 ... that are informative about aggregate exposure
 - trading, prices, measured risk premia?
Overview of Model

- Two period exchange economy with incomplete markets
 - assets contingent on aggregate risk factor realized tomorrow
 - LRT utilities; endowments tradable

- Private information
 - news about asset payoffs
 - endowments & preferences → initial exposures to risk factor

- Two aggregate shocks today
 - pooled news about asset payoffs:
 - “how many agents get good news”
 - private news informative about pooled news
 - aggregate shock to distribution of initial exposures
 - “how many agents have high initial exposure”
 - = “aggregate exposure” of (full info) representative agent
 - individual exposure informative about aggregate exposure

- Rational expectations equilibrium
Nonrevealing Equilibria

• Prices do not reflect all agents’ pooled information
 – about news → relevant for expected asset payoffs
 – about aggregate exposure → relevant for risk premia
 e.g. low price because bad news or high aggregate exposure!

• Equilibrium beliefs depend on initial exposure
 – agent w/ high initial exposure more optimistic
 1. believes that aggregate exposure is high
 2. views price as better news (than does low-exposure agent)

• Trading does not equate exposure across agents
 – in contrast to full info case
 – less reallocation of exposure by agents with same signals about payoffs
 – more “speculative” trading by agents with same exposure, different signals
Asset Pricing Implications

• Shocks to aggregate exposure matter more
 – price always lower if higher aggregate exposure (higher risk premium)
 – with asymmetric info, price drop mistaken for low expected payoff!
 ⇒ price falls even more

• Joint behavior of volume & risk premia in a crisis
 – increase in (i) aggregate exposure and (ii) uncertainty about exposures
 ⇒ low volume & high risk premia, low prices

• More excess return predictability
 prices respond more to shocks that are not payoff news
 ⇒ econometrician observes more time variation in risk premia

• Wealth effects & belief aggregation
 – e.g. log utility: price reflects wealth-weighted average belief
 – correlation of wealth and exposure matters for risk premia
Related Literature

- **Existence & efficiency in economies with asymmetric information**
 Radner, Laffont, Green, Lucas

- **Quasi-complete economies**
 DeMarzo-Skiadas

- **Exponential utility & normal shocks**
 noise traders: Grossman-Stiglitz, Hellwig, Admati
 uncertain endowments: Diamond-Verrecchia, Ganguli-Yang
 dynamics: Wang, Albuquerque-Bauer-Schneider

- **Heterogeneous beliefs and asset prices**
 Detemple-Murthy, Calvet-Grandmont-Lemaire, Jouini-Napp

- **Adverse selection in financial markets**
Now what?

Paper considers different setups

1. discrete states, u smooth
 (choose values appropriately for nonrevelation)

2. continuous & discrete states, u linear risk tolerance
 (cannot have fully informative equilibrium!)

3. normal shocks, u exponential

This talk: consider case 2 with identical log utilities
Computational algorithm available
Model with log utility

Continuum of agents and 2 dates. Timing:

1. Nature draws distribution μ of agent types θ

 - Type determines endowment & information

 - Agents observe type & asset prices, but not μ

 Agents trade assets

 - Assets = claims on $\tau \in \{\tau_1, \tau_2\}$ realized at date 2 ($\tau_1 > \tau_2$)

 - Markets incomplete: no assets contingent on aggregate shock μ

2. “Tradable risk factor” τ realized

 Assets pay off & agents consume
Agent Problem

- Type θ determines
 - endowment $\omega(\theta) = (\omega_1(\theta), \omega_2(\theta))$, depends on tradable risk τ only
 - signal $s(\theta)$

- $\hat{\delta}$ = subjective probability of high state $\tau = \tau_1$, given θ, prices

- Agent solves

$$\max_{(c_1, c_2)} \left\{ \hat{\delta} \log c_1 + (1 - \hat{\delta}) \log c_2 \right\}$$

s.t. $pc_1 + (1 - p)c_2 = p\omega_1(\theta) + (1 - p)\omega_2(\theta)$.

where $p =$ price of claim on high state $\tau = \tau_1$.
Distribution of Types

- Endowments differ across types only if initial exposure to \(\tau \)-risk differs
 - initial exposure to \(\tau \)-risk is 1-1 with \(e_\tau (\theta) := \log \frac{\omega_1(\theta)}{\omega_2(\theta)} \)
 - positive exposure to \(\tau \) \(\iff \) endowment higher if \(\tau \) hi \((\tau = \tau_1 > \tau_2) \)

- Four different types:
 - Exposure \(e_\tau \) high or low: \(\bar{e} > e \)
 - Signal \(s \) good or bad: \(\bar{s} > s \)

- Type distribution \(\mu \) parameterized by \(\delta, \varepsilon \)
 - \(\delta \) agents get good signal \(\bar{s} \), and \(\delta = \text{Prob} (\tau = \tau_1 | \mu) \)
 - \(\varepsilon \) agents get high exposure \(\bar{e}_\tau \)
 - \(e_\tau, s \) independent across agents given \(\mu \)

- Distribution of aggregate shocks \(\delta, \varepsilon \)
 - \(\varepsilon \in \{\varepsilon^l, \varepsilon^h\} \), with \(\varepsilon^l < \varepsilon^h \) and \(\text{Pr} (\varepsilon = \varepsilon^h) = \eta \)
 - \(\delta \in [0, 1] \) with conditional density \(f (\delta; \varepsilon) \).
Rational Expectations Equilibrium

Price function $\tilde{P}(\delta, \varepsilon)$ & allocation $c(\theta, \delta, \varepsilon)$ s.t. for every δ, ε

1. Agent’s optimize given price $p = \tilde{P}(\delta, \varepsilon)$ and belief $\hat{\delta}$
 (belief formed by Bayes rule given θ, p and knowledge of \tilde{P})

2. Markets clear
 $$\sum_{\theta \in \Theta} \mu(\theta) c(\theta, \delta, \varepsilon) = \sum_{\theta \in \Theta} \mu(\theta) \omega(\theta, \delta, \varepsilon) =: \Omega(\varepsilon).$$
Types of equilibria

- $\delta (\delta, \varepsilon) = \text{wealth weighted average of beliefs } \hat{\delta}(\theta)$

- With log utility, equilibrium price can be written as

$$\frac{p}{1-p} = \frac{\delta (\delta, \varepsilon)}{1 - \delta (\delta, \varepsilon)} \frac{\Omega_2(\varepsilon)}{\Omega_1(\varepsilon)}$$

- Full information:
 - $\delta (\delta, \varepsilon) = \delta$,
 - representative agent pricing
 - price decreasing in aggregate exposure, or $\log \frac{\Omega_1(\varepsilon)}{\Omega_2(\varepsilon)}$
 (aggregation of initial exposure works more generally for LRT class)

- Asymmetric information
 - can’t have fully informative equilibrium (agents learn δ from price)
 - can’t distinguish news δ, aggregate exposure (& hence ε) from price
 - consider nonrevealing equilibria with \tilde{P} continuous & strictly increasing in δ
Proposition. For all δ, $\tilde{P}(\delta, \varepsilon^l) > \tilde{P}(\delta, \varepsilon^h)$ (higher aggregate exposure lowers prices)
Proposition. Individual beliefs \(\hat{\delta}(\theta) \) satisfy

1. *holding the signal* \(s \) *fixed, agents with higher exposure to* \(\tau \)-*risk* \(\bar{e} \)
 are more optimistic that \(\tau \) *high*)

2. *holding exposure fixed, agents with the good signal* \(\bar{s} \)
 are more optimistic that \(\tau \) *high*)

Implications for trading, compared to full info

- **Part 1** \(\implies \) *less reallocation of exposure* (same signal, different demand)
 with full info: equates exposure across agents

- **Part 2** \(\implies \) *more speculative trading* (same endowment, different demand)
 with full info: zero
Amplified Shifts in Aggregate Exposure

Proposition. For every $\delta \in (0, 1)$,

$$\tilde{P}(\delta, \varepsilon^l) > \tilde{P}_{FI}(\delta, \varepsilon^l) > \tilde{P}_{FI}(\delta, \varepsilon^h) > \tilde{P}(\delta, \varepsilon^h).$$

(price depends more strongly on aggregate exposure under asymmetric information)

Recall

$$\frac{\tilde{P}(\delta, \varepsilon)}{1 - \tilde{P}(\delta, \varepsilon)} = \frac{\tilde{\delta}(\delta, \varepsilon)}{1 - \tilde{\delta}(\delta, \varepsilon)} \frac{\Omega_2(\varepsilon)}{\Omega_1(\varepsilon)}.$$

- direct effect of exposure same in full- and asymmetric-info cases
- with asymmetric info, ε also moves average belief $\tilde{\delta}$
- for example, if aggregate exposure increases, price falls as with full info, and
 - belief effect: price could reflect good news, $\tilde{\delta} > \delta \Rightarrow$ price lower
 - wealth effect: wealth of high exposure, optimistic agents falls \Rightarrow price lower
Interpretation: Credit Crisis

• “Market freeze” & “fire sale prices” in frictionless markets?

• Labels
 —agents = banks
 —risk $\tau = \text{aggregate shock that affects payoff on mortgages}$
 —individual exposure = sensitivity of cash flow to τ is private info

• Initial equilibrium: $\varepsilon = \varepsilon^l$, exposures known
 — prices aggregate dispersed info about τ
 — exposures equated by trading MBS

• Comparative static: $\varepsilon = \varepsilon^h$ and individual exposures private info
 — banks estimate ε^h from own exposure & price
 — less trading between exposed and non-exposed
 — price low (might reflect bad news about payoffs)
 — price lower than what is predicted by observer
 who knows δ & assumes “worst-case” exposure ε^h:

$$\tilde{P}(\delta, \varepsilon^h) < \tilde{P}_{FI}(\delta, \varepsilon^h).$$
Wealth Effects and Average Beliefs

- Consider econometrician who
 - sees many realizations from model
 - correctly assumes log preferences
 - estimates joint distribution of τ, p & consumption from data
 - assumes full info & tests representative agent Euler equation

- Euler equation does not hold: price reflects wealth-weighted average belief!

- If low exposure agents are wealthier, average belief is more pessimistic than estimated distribution → find “risk premium puzzle”

- If high-exposure agents are wealthier, the opposite results obtains.

- In addition, find “time variation in risk aversion”: prices look too optimistic when high, too pessimistic when low
Predictability & Excess Volatility

- Why do low prices predict high excess returns?

- Observed in many markets (e.g. stocks, bonds)

- Econometrician looks at data from the model

 Runs regression of excess return on price

- With full or asymmetric info, regression beta < 0, $R^2 > 0$

- With asymmetric information, $|\beta|$, R^2 strictly larger

 - analytical results with exponential utility & normal shocks

 - numerical results with log utility; wealth distribution matters

- Exposure shocks always move premia more with asy info
Conclusion

• This paper
 – news about aggregate exposure arrive as dispersed information
 – agents see only initial individual exposures ...
 ... that are informative about aggregate exposure

• Agents disagree in equilibrium
 – agent w/ high initial exposure more optimistic
 1. believe aggregate exposure high
 2. view price as better news (than do low-exposure agents)

• Trading does not equate exposure across agents

• Asset pricing implications:
 – shocks to aggregate exposure matter more
 – joint behavior of volume & risk premia: the crisis
 – more excess return predictability
 – wealth effects & belief aggregation