The Perks of Being Unknown: Implied Costs of Knowledge Seeking on Organizational Platforms

Maren Mickeler
Ludwig-Maximilians-University Munich
m.mickeler@lmu.de

Pooyan Khashabi
ESSEC Business School
pooyan.khashabi@essec.edu

Marco Kleine
University of Groningen
marco.kleine@ip.mpg.de

Tobias Kretschmer
Ludwig-Maximilians-University Munich and CEPR
t.kretschmer@lmu.de

ABSTRACT
Organizational platforms enable the efficient exchange of resources like knowledge or help among organizational members. Yet, employee engagement frequently remains low. Focusing on knowledge seekers, we argue that seeking behavior is influenced by implied (a) social-psychological costs, and (b) economic considerations, and posit that both costs are sensitive to revealing the seekers’ identity. In two experiments, we test our conjectures and find that both types of implied costs affect seeking behavior: if an individual’s identity becomes known, knowledge seeking on the platform decreases. If seeking comes with additional economic consequences, seeking behavior declines even further. We also find that females seek more in response to anonymity than males. These results highlight the role of user anonymity on platform engagement in organizational contexts.

Key words: organizational platforms; knowledge seeking; virtual work; search costs; anonymity; platform member engagement; lab experiment; online survey experiment
1. INTRODUCTION

How can organizations foster exchange of knowledge and help among their members? In many settings, efficient knowledge sharing is a key source of competitive advantage (Haas & Hansen, 2007). Driven by technological advances, knowledge exchange in organizations is increasingly mediated by digital platforms (Loebbecke & Myers, 2017; Thomas et al., 2014). Indeed, 40% of the 500 largest listed companies in the US currently use platforms for internal collaboration and knowledge exchange. This share is likely to rise with increasing use of remote and distributed work (Spreitzer et al., 2017; Deloitte, 2020).

Organizational platforms can efficiently match knowledge seekers and contributors by bringing together dispersed members of the organization that may not have connected otherwise (Purvis et al., 2001; McIntyre & Srinivasan, 2017). Yet, despite their potential, member engagement on these platforms often remains low, which limits their efficacy given (positive) cross-side network effects between seekers and contributors (Parker & Van Alstyne, 2005; Boudreau & Jeppesen, 2015). To work effectively, both knowledge contributors and seekers must actively participate, which makes user engagement a key requisite for platform success.

Prior work studies the role of network effects in the benefits of joining a platform and the role of (pecuniary) costs in user adoption and participation (Hagiu, 2005; Cennamo & Santaló, 2013; McIntyre & Srinivasan, 2017). Organizational platforms give individuals access to a large number of colleagues and thus mute the effect of an individual’s network position and structure on knowledge search (Tsai, 2001; Adamic & Adar, 2005). Yet, being exposed to a large audience may also create costs for individuals. These costs are based on employees’ expectations about peer reactions to their observable behavior on the platform, and thus have an implied nature (Borgatti & Cross, 2003; Hayton et al, 2011). We posit that such implied costs matter especially for the seeking side and ask how implied costs influence individuals’ willingness to seek knowledge on organizational platforms. Moreover, we argue that anonymity
on organizational platforms affects the implied costs associated with knowledge seeking. Hence, we further ask how anonymity influences individuals’ knowledge-seeking behavior.

Building on literature on platform strategy and knowledge- and help-seeking, we argue that a change from one-to-one to one-to-many interactions may amplify the perceived costs of the seeking side. Specifically, we argue that seeking knowledge on organizational platforms can trigger two types of implied costs: (a) social psychological costs (e.g., shame in front of other organizational members) and (b) economic consequences (e.g., career disadvantages due to reputational losses in front of managers and peers). Both costs stem from (expected) negative judgements by others. While the former describes the psychological disutility of judgements by others, the latter captures individuals’ expected payoffs from tangible outcomes such as future promotions. These implied costs become salient when a seeker’s identity is observable and behavior on the platform is public. Consequently, concealing a seeker’s identity may mute those costs. Thus, we study the effect of each cost type on individual search behavior by varying the extent and consequence of personal information available to other members on the platform.

We run two experiments to test our conjectures in different contexts: First, we conduct a lab experiment in which we model an organizational platform on which (factual) knowledge can be exchanged. Subjects receive a set of questions, which they can either answer themselves or seek additional knowledge by requesting the answer on the platform. Second, we collect data closer to real-life contexts by running a survey experiment administered online to practitioners from different professional backgrounds. Across several scenarios where subjects have to complete a task for which they need additional information by others, subjects report their inclination of seeking that knowledge on an organizational platform. In both experiments, we construct three scenarios altering individuals’ implied costs by granting seekers anonymity and varying potential economic consequences when searching. In both contexts, we find that psychological and economic costs reduce knowledge seeking on organizational platforms. Our results suggest that muting these costs can increase engagement on organizational platforms.
We also find a robust gender effect: across both experiments, female participants react stronger to anonymity and increase their seeking more than male participants when granted anonymity.

We contribute to the literature on platform strategy (Cennamo & Santaló, 2013; McIntyre & Srinivasan, 2017; Zhu & Liu, 2018; Kretschmer et al., 2022) by studying the causal effect of a simple intervention by the platform owner to manage engagement on one side of the platform. While the effect of platform member anonymity has not been studied extensively so far (Gal-O et al., 2018), our results suggest that it could be a powerful strategy to steer participation and engagement of the seeking side through soft incentives, especially in the context of organizational platforms. We also add to literature on knowledge sharing and help seeking. Prior work found that social networks and network structures influence individuals’ opportunities and costs when searching for knowledge in organizational contexts (Hansen, 1999; Hansen, 2002; Singh et al., 2010). Although platforms are set up to simplify the process of searching for knowledge providers by muting the influence of informal network structures on individuals’ search efforts, we show that implied costs remain in place. Finally, we inform work on digital transformation and organization design (Brynjolfsson & McAfee, 2014; Kretschmer & Khashabi, 2020; Raj & Seamans, 2019) by highlighting conditions for efficient resource allocation in digital (exchange) contexts. New, digitally supported work arrangements may therefore fundamentally change the way knowledge is shared in organizations.

2. ORGANIZATIONAL PLATFORMS AS ENABLERS OF KNOWLEDGE EXCHANGE

Aided by advancements in information technology, organizations increasingly adopt platform-based technological solutions to best utilize resources and capabilities residing within the firm (Yoo et al., 2012). Examples include contexts such as crowdsourcing, problem solving, and idea sharing (Deichmann & Van den Ende, 2014; Malhotra et al., 2017; Zuchowski et al., 2016). In the majority of these cases, the organization itself initiates the exchange with and among its employees on the platform, for example by posting predefined challenges (Piezunka
& Dahlander, 2019) or problems that require individuals’ input (Jeppesen & Lakhani, 2010). Conversely, we focus on platform-based resource exchange where the need (and thus the impetus to interact) comes from employees rather than the organizational sponsor. Specifically, we concentrate on intra-organizational knowledge exchange, where the interchange of (a group of) members of an organization is based on their need for knowledge from others.

Knowledge exchange between members of an organization has two phases: knowledge search and knowledge transfer (Hansen, 1999). Hence, successful knowledge sharing requires (i) individuals who acknowledge their need for information from others, (ii) an effective search strategy, and (iii) individuals who are willing and able to transfer their knowledge (Hansen et al, 2005). Prior work has identified several factors driving the effectiveness of knowledge exchange in organizations such as individuals’ network position and structure (Tsai, 2001; Adamic & Adar, 2005), the type of knowledge to be transferred (Haas & Hansen, 2005; Ancori et al, 2000; Zander & Kogut, 1995) and the nature and context of the relationships between individuals involved in the exchange (Gupta & Govindarajan, 2000; Reagans & McEvily, 2003; Tsai, 2002; Grodal et al., 2015). As employees can benefit from obtaining and using knowledge that exists in other parts of the firm (for an contrasting view see Haas & Hansen, 2005), firms should strive to facilitate knowledge sharing, with digital platforms being an important tool to enable the dissemination of knowledge residing within firms’ boundaries (Purvis et al., 2001).

Built on the functionalities of advanced information technologies, organizational platforms enable the exchange of information and knowledge between employees that could otherwise not transact as easily (Gawer, 2014; Thomas et al., 2014; Purvis et al., 2001). Whereas in traditional (unmediated) settings of knowledge exchange most interactions between individuals take place on a one-to-one basis, organizational platforms give employees the chance to engage in one-to-many interactions and thus broaden the reach of both knowledge seekers and contributors within the organization. Further, by offering a central touchpoint to interact with others in the firm, organizational platforms bundle employee knowledge exchange while
capturing the respective information and shared knowledge in a single digital location. Doing so, organizational platforms have the advantage of facilitating the reuse of (codified) knowledge residing within the firm. The opportunity to reuse internal knowledge is due to two main reasons: First, organizational platforms bring together employees that might not connect otherwise. Employees searching for specific information or solutions to a particular problem can post their question on the platform.Depending on the platform’s architecture, requests and corresponding answers are usually visible to (almost) all members of the organization.¹ Firm internal experts outside the knowledge seekers’ personal network can thus share their knowledge (and display their expertise status) by responding to the request. This can be especially helpful for individuals at the periphery of an organization who, in unmediated settings of knowledge exchange, are frequently unsuccessful in their search or invest a vast amount of time searching for answers (Singh et al., 2010; Tsai, 2001).

Second, by codifying and storing interchanges between seekers and contributors, organizational platforms make existing knowledge available to individuals with similar matters without having to initiate another search process. This also shields contributors with expert status from giving the same answer repeatedly due to multiple private requests from colleagues.

Yet, despite the benefits of platforms for organizations, firms often struggle with fully tapping into platforms’ potential because of low member engagement. Anecdotal evidence from a large German industrial manufacturing company² suggests that employees recognize the shortcomings of traditional means of knowledge exchange ("I spend approximately 70 percent of my day on the phone explaining [certain topics] to others in the firm. […] If someone calls me, only this particular person receives the answer"). While they acknowledge the (potential) benefits of using the company’s exchange platform ("Questions that are answered on the

¹ An exemplary screenshot of a real-life organizational platform user interface is in Appendix D.
² Interviews were conducted in a large German manufacturing company in the context of a final thesis in Winter 2022. The student, who was also an employee of the firm, interviewed colleagues at different hierarchical levels and tenure at the firm and additionally ran a large-scale survey within one of the company’s divisions. The name of the firm as well as transcripts of the interviews are available to the editor upon request.
platform [on the other hand] can also help others.’), they are also concerned “to appear stupid” and “to ask a stupid question” visible to colleagues and superiors, creating a general unwillingness “to stand out of the crowd by acknowledging a knowledge deficit”. Employees emphasize audience size as a concern when deciding to engage on the platform (“I have to say, this is way too large of an audience for me.”). Moreover, lack of control over the composition of members reading their posts makes employees uneasy (“I just don’t know who is actually on the platform reading my posts”), especially regarding the presence of superiors on the platform (“I am pretty sure that [Name of manager] is checking on the content that is posted”).

Hence, despite the undisputed potential of organizational platforms to facilitate knowledge exchange and reuse, employee engagement often seems held back by a broad range of concerns by employees (Deloitte, 2021). We now discuss and structure these concerns by taking a cost-based perspective to explain individuals’ use of organizational platforms.

3. IMPLIED COSTS OF KNOWLEDGE SEEKING ON ORGANIZATIONAL PLATFORMS

For knowledge to be shared, others typically have to ask for it first. We thus focus on knowledge seeking as prerequisite for any knowledge exchange to explore employees’ implied cost of using organizational platforms. Seeking may also confer benefits for the individual in some cases. For example, seeking knowledge publicly may signal engagement and competence to peers and managers.3 We focus on what prior work and anecdotal evidence identifies as key bottleneck for the success of organizational platforms: poor engagement and participation. Therefore, we hone in on the role of implied costs as the main impediment for the seeking side to derive insights for improving user engagement. Drawing on work on knowledge- and help seeking, we posit two types of implied costs in platform-mediated knowledge search: social psychological and economic costs. These costs are implied because they depend on individuals’ expectations about others’ reaction to knowledge seeking (Borgatti & Cross, 2003).

3 The authors cannot help but mention the time-honored academic tradition of asking “more of a comment than a question” in seminars in this context.
Social Psychological Costs

Social psychological costs are driven by others’ perception of oneself. Examples of individuals’ social psychological costs when seeking knowledge or soliciting help from others include feelings of inferiority, guilt or shame (Gouldner, 1960; Ames & Lau, 1982; Wills & DePaulo, 1991; Lee, 2002). Psychological costs have been studied in a variety of settings and contexts, such as advice- (Brooks et al., 2015), feedback- (Ashford, 1986) and help-seeking behavior (Rosette et al., 2015). Since psychological costs originate from a process involving both cognitive and affective evaluation by the individual, emotions matter for individual decision-making when searching for help in the form of knowledge (Ames, 1983; Hofmann et al., 2009). Affective factors influencing the decision whether or not to seek knowledge from colleagues include the fear of appearing incompetent (Brooks et al., 2015), embarrassment (Shapiro, 1983; Suzuki & Calzo, 2004), shame, and fear of experiencing stigma (Chandrasekhar et al., 2018). We discuss the latter two in more detail.

Shame. Shame is triggered by an individual’s experience of failure relative to a standard (one’s own or other individuals’) (Lewis, 1992). We distinguish between shame and embarrassment by the degree of public exposure underlying each state (Edelmann, 1981). Only shame, but not embarrassment, can be felt when being alone. Especially in organizational contexts in which competence, superiority, and independence are important to one’s self-esteem and own standards, feelings of shame can become prohibitive, and individuals are less likely to seek for help even if needed and available in principle (Lee, 2002).

Stigma. Stigma is an attribution contrary to a norm of a social unit (Goffman, 1963). Stigmatized individuals possess or are believed to possess characteristics that signal an inferior (social) identity in a particular context (Crocker et al., 1998). Since stigma results from an active labeling process by a group of individuals other than the self, it comes with considerable social psychological costs for the individual.
Prior work shows that social psychological cost considerations influence employees’ knowledge search. Individuals are more likely to approach others who are more familiar and with whom the exchange is perceived safe and trustful (Hansen & Lovas, 2004, Casciaro & Lobo, 2008, Singh et al., 2010). Since knowledge seeking on organizational platforms is not a one-to-one but rather a one-to-many interchange, the number of possible partners to interact with increases with platform size, and an individual’s familiarity and trust in members on the platform decreases (Butler, 2001). Consequently, individuals broadcast their lack of knowledge to a substantial (actual or assumed) number of others while having no control about audience composition (e.g. 'What if my (future) boss realizes I do not know about this topic?'), which in turn might create considerable social psychological costs.

Economic costs

Economic costs refer to tangible outcomes and losses affecting the individual in search for knowledge. In organizational settings, this could be losses and disadvantages related to promotions, team and project assignments, salary raises etc. These costs also stem from negative judgements by others, specifically managers and work peers. While we label these costs as economic costs, it is worth clarifying that what we consider in our framework is the *expectation* of such economic consequences. Organizational members assess potential tangible losses related to their knowledge seeking behavior. If expected losses exceed potential gains, they refrain from seeking help in the form of knowledge or information.

Stigma and negative judgement in organizational settings can trigger tangible consequences through the risk of economic sanctions (Devers et al., 2009) by peers and managers, resulting in poor bargaining positions for promotions, absence of bonuses, lack of (strategic) collaboration with partners and further. Economists have long discussed the frictions and losses generated by the disclosure of agents’ information in market exchange settings. In a series of studies, Roth argues that exchange markets and their matching mechanisms would not
function well if individuals are penalized for revealing their type – labeled \textit{unsafe} markets in Roth’s terminology (Roth, 2008, 2018).

When publicly seeking knowledge on organizational platforms, individuals reveal information about themselves, which might lead to future penalties. For instance, seeking certain types of information would indicate an individual’s lack of ability, competence, experience, or skill to her peers and middle and top managers, all of whom also have access to the platform. Knowledge seekers may be concerned that such exposure may influence their career within the organization, which would come with tangible (economic) implications. This can inhibit knowledge seeking, which ultimately means that a portion of the firm’s knowledge resources remain underused or dormant.

4. DATA AND METHODS

To hone in on some key elements of knowledge seeking on organizational platforms and the implied costs involved, we designed a computerized lab experiment.\(^4\) The experiment was incentivized and we did not use deception. In three treatments, we systematically varied social psychological as well as economic consequences of individuals’ seeking knowledge on a platform. We applied a between-subject design in which each experimental subject was randomly assigned to participate in one of the treatments. We first describe the basic setup of the experiment and then explain the treatment-specific differences.

4.1. Basic Setup of the Experiment

At the beginning of the experiment, subjects receive 15 general knowledge questions with multiple-choice answers. The set of questions is different for every subject and the selection process ensures that every subject received questions of varying difficulty and the average difficulty of each question set is similar across subjects.\(^5\) For every correct answer, subjects

\(^4\) In an auxiliary survey experiment, we ran an online experiment with practitioners (described in in section 5.4).
\(^5\) The exact procedure for the assignment of questions to subjects was as follows: Questions were selected from different online sources on general knowledge quiz websites. The question difficulty was then pretested with subjects from a well-established German laboratory subject pool. To do this, we recruited 36 subjects and asked them to answer a set of 160 questions (for each correct answer a subject earned 0.12 EUR). Doing so, we collected 12 answers per question and classified questions by their inherent difficulty. For our main experiment, we created 18 different question sets each of which contained four “easy” questions (correctly answered by at least nine
earn 1.25 EUR. Crucially, for every question subjects have the option of seeking knowledge by asking for additional knowledge on the platform. If they seek, they receive a correct answer with the probability $p=0.8$. With probability $(1-p)$, subjects do not receive any reply and their own initial answers to the question count (the computerized contributor never gives a wrong answer). Seeking is costly (reflecting effort costs for posting a question on a platform) in that subjects have to pay 0.10 EUR. Payoffs are such that, absent any other cost considerations (social psychological costs or risk of economic consequences), subjects should seek knowledge even if they have a high subjective belief (but not perfect knowledge) of knowing the answer.\(^6\) With computerized contributions, we eliminate behavioral differences in knowledge providers’ behavior and respective uncertainty of expected benefits of seeking knowledge on the platform. Thus, we can draw causal inferences of cost-side differences on the seekers’ side without the need to control for differences in (expectations on) contributing behavior.

After deciding whether to seek knowledge for each of the 15 questions, subjects have to answer the full set of questions, i.e. even those questions for which subjects sought additional resources as a “back-up” and no computerized contribution was given. Subjects only learn at the end of the experiment whether seeking was successful. This reflects the fact that in organizational contexts individuals who do not receive valuable contributions on organizational platforms usually have to proceed based on their own assessment.

Following the quiz stage, all subjects’ seeking behavior is made public. All subjects of the session learn the number and content of questions a subject sought knowledge for. This reflects the public posting of questions or requests on organizational platforms.\(^7\)

\(^6\) Risk neutral money maximizing individuals would seek if their subjective probability of finding the correct answer themselves is below 0.9.

\(^7\) Instructions as well as the user interface displayed to participants in our experimental setup are in Appendix A.
While stylized, our general setup captures some key elements of individual knowledge seeking on organizational platforms. As is typical for common work environments, subjects are confronted with a multidimensional task reflected by a number of diverse questions. We asked general knowledge questions since for our generic laboratory subject pool not tied to any specific profession, admitting a lack of knowledge on general knowledge questions creates similar considerations about psychological costs and economic consequences as admitting a lack of capabilities or resources on skill-related professional tasks for members of an organization. Further, as with participation on organizational platforms, subjects in our laboratory experiment expose their lack of knowledge resources to a set group of others in exchange for increasing the probability of receiving correct answers or helpful contributions.

As explained in Section 3, exposing one’s lack of certain knowledge to others may trigger implied social psychological costs and increase the risk of economic consequences. Yet, platform design may vary the extent to which seeking knowledge on organizational platforms affects these costs. Our treatments reflect this.

4.2. Experimental Treatments

ECONOMICCONSEQUENCES. In our ECONOMICCONSEQUENCES treatment, we simulate the presence of both social psychological costs and economic consequences. This treatment most closely reflects the case of organizational platforms frequently found in professional contexts in which seekers are fully identifiable and seeking behavior is visible to other members of the platform. In these situations, seekers may be concerned that others infer from their seeking behavior that they lack certain abilities and skill levels and feel ashamed of not living up to individual and organizational standards. Seekers may also fear (especially when asking easy questions) that their behavior leads to negative future economic consequences in the form of foregone promotions, bonuses or else.

To stimulate the social psychological cost component of knowledge seeking in ECONOMICCONSEQUENCES, the disclosure of seeking behavior comes with a profile picture and
the first name of the subject. Pictures were taken on a computer terminal prior to the experiment. With the profile picture and first name, seeking behavior can be traced back to a person. Consequently, all other subjects in the session can form an opinion about the person’s seeking behavior and arguably her skills and abilities.

To introduce potential economic consequences of seeking knowledge on the platform, the first stage answering of questions (and asking for knowledge if needed) is followed by a second stage: another multiple-choice knowledge quiz. In this stage, subjects answer another set of 10 questions and earn money for each correct answer. Here, no additional seeking is possible. Importantly, individual bonuses for this quiz are chosen by a judge – a randomly chosen subject who does not actively participate in the first stage of the experiment. The judge observes the first stage and is shown the seeking behavior of each subject in the session before deciding whether an individual shall receive a low, medium or high bonus for correct answers in the second stage quiz. The judge assigns low bonuses to 1/3 of the session subjects, medium bonuses to 1/3 of the subjects and high bonuses to 1/3 of the subjects. Subjects are informed about this procedure (including information about individuals’ seeking behavior provided to the judge and incentives of the judge) at the beginning of the experiment. Hence, participants may consider the consequences of their first-stage behavior on the platform for the second stage of the experiment. When posting questions in the first stage to seek additional knowledge, a subject may fear being considered less competent by the judge and receive lower second stage bonuses. The judge receives a payment equal to 20 percent of each individual’s second stage earnings. Hence, her incentives are to assign high bonuses to individuals with high expected performance and low bonuses to individuals with low expected performance. Note that ECONOMICCONSEQUENCES is the only treatment in which subjects are confronted with a second stage; this second stage is absent in the treatments, which we explain in greater detail below.

8 A low bonus is 0.25 EUR per correctly solved questions, a medium bonus is 1.00 EUR per correctly solved question and a high bonus is 1.75 EUR per correctly solved question. Since we are interested in the consequences of seeking help and of other influences based on personal characteristics, the judge decides based on anonymized public knowledge seeking and is presented neither profile pictures nor names.
Again, this treatment aims to closely reflect organizational platform contexts where seeking knowledge might be tied to possible future economic consequences due to others’ inferences on their ability and expertise. While individual behavior may lead to follow-on economic consequences in a broad range of situations, the closest analogy to our stylized setting can arguably be found in promotion decisions by superiors.

NON-ANONYMOUS. In the NON-ANONYMOUS treatment, the provision of personal information on individual seekers resembles our ECONOMICCONSEQUENCES treatment. Accordingly, knowledge-seeking behavior of all participants is shown to the other subjects together with a profile picture and a first name. However, unlike in ECONOMICCONSEQUENCES, there is no second stage quiz and subjects do not have to consider explicit pecuniary consequences of their seeking behavior. Hence, while keeping the risk of experiencing shame and stigmatization constant (i.e. the social psychological costs) we mute negative economic consequences.9 The simplest real world analogy is an organizational platform in which resource seekers are identifiable, but those who could affect subjects economically are not active on the platform (e.g. hierarchically superior members of the organization who promote individuals or assign bonuses do not have access to the platform). Importantly, by comparing behavior in the NON-ANONYMOUS treatment with behavior under ECONOMICCONSEQUENCES, we can isolate the impact of economic cost considerations beyond the impact of social psychological costs.

ANONYMOUS. In ANONYMOUS, seeking behavior of participants cannot be traced back to individuals since posting requests on the platform is neither connected to a profile picture nor a name. There is no second stage in which prior behavior could matter economically either.

9 By eliminating a second stage (compared to ECONOMICCONSEQUENCES), one may argue that not only economic consequences due to judges’ behavior are muted, but other anticipatory effects may affect stage-one behavior. For instance, just by knowing that there is subsequent stage, in which a subject may earn additional money, may make subjects less attentive in stage one. We do not deem this very likely, amongst other, because of the decent monetary incentive for stage-one behavior. Moreover, we are able to compare stage-one behavior across treatments that should be affected by the mere presence of a second stage, but not by our treatment manipulation – the judge’s bonus allocation. More specifically, we can compare subjects’ own quiz performance the 15-questions-quiz of stage one, disregarding the knowledge seeking. Subjects’ quiz performance and the time spent for solving the 15 questions are almost identical across treatments, which corroborates our arguments that our judge treatment manipulation is driving behavior and not the mere presence of a second stage.
Hence, in our ANONYMOUS treatment, both types of implied costs stemming from judgements by other participants are muted. Deviations from expected behavior (i.e. seeking knowledge on the platform) in this case can be explained solely by referring to an individuals’ aversion to seeking external help in solving the task of answering the questions (as seeking behavior is private). Comparing behavior in the ANONYMOUS treatment with the NON-ANONYMOUS treatment helps us understand if psychological costs associated with providing personal information to other platform members affect seeking behavior and platform engagement.

4.3. Post-Experimental Stage

After each session, subjects answered a short questionnaire including questions on socio-demographics, risk attitudes and general social image concerns. Finally, participants learned about their payoff and to what extent it was attributed to their own correct answers and the received knowledge respectively. Prior to leaving the laboratory, subjects privately received their payment in cash. Table 1 summarizes the stages and the treatment differences.

-------- INSERT TABLE 1 ABOUT HERE --------

4.4. Measures

Dependent variable. We measure participants’ seeking behavior across treatments and per question as a binary variable (knowledge sought/not sought). Since the pecuniary benefits (1.25 EUR) and the out-of-pocket cost of seeking (0.10 EUR) are constant across treatments, differences in seeking behavior across treatment groups (ECONOMICCONSEQUENCES, NON-ANONYMOUS, ANONYMOUS) are driven by different levels of implied costs of seeking knowledge on an organizational platform.

Independent variables. We systematically vary social psychological costs and economic consequences across treatments. ECONOMICCONSEQUENCES is set up as the most cost-intensive setting and includes both types of implied costs. Since we assume that individual decision making in organizational reality features the full range of proposed cost considerations, we use ECONOMICCONSEQUENCES as our baseline setting. In NON-ANONYMOUS, we stimulate participants’ feelings of shame and fear of social stigma while muting economic costs. Finally,
ANONYMOUS is the least costly treatment (both types of implied costs are absent). We also include control variables to capture participants’ gender, age, prior experience in experiments as well as a binary variable indicating whether a participant’s native language is German. Moreover, to get at the mechanisms at play, we asked participants for the importance they attach to the opinion of others on a 5-point Likert scale.10

4.5. Sample Description

The experiment was conducted at a well-established German laboratory11 in 2019. We used z-Tree (Fischbacher, 2007) for programming. In total, 268 participants were recruited from the lab’s subject pool using the recruitment software ORSEE (Greiner, 2015). 82.9% of the subjects were students from a large variety of disciplines. On average, the subjects were 27.0 years old, 54.0% being female. We ran 15 sessions, with 15 to 19 subjects per session. Participation in the experiment lasted about 75 minutes. On average, subjects received a payment of 20.3 EUR (equivalent to 22.8 USD at the time of the experiment), including a show-up fee of 6 EUR.

5. RESULTS

Table 2 gives a summary of our main variables.

-------- INSERT TABLE 2 ABOUT HERE --------

The dependent variable for all our analyses is seeking behavior. Models are estimated at the question-level. In a robustness test, we aggregate seeking behavior to subjects and run individual-level analyses with very similar results. Unless specified otherwise, the reported p-values for the bar chart results correspond to t-tests for equality of means, and the p-values for regression results report the t-test of statistical difference from zero (or the baseline).12

Before discussing the treatment effects, and to check the validity of our design, we show how question difficulty is associated with seeking patterns. Figure 1 shows average seeking behavior for different levels of question difficulty.

10 This question is only available on a subset of our data, which results in smaller sample size of these analyses.
11 The exact location and name of the laboratory are blinded to preserve author anonymity.
12 Below, we present the Mann–Whitney U test p-values and show that our results are robust.
Knowledge seeking is higher for difficult questions (64% for the category of ‘tough’ question, 33% for the ‘easy’ category). Seeking behavior across categories is significantly different at p<0.01, which supports our experimental design choices regarding the question set.

5.1. Main Treatments

We test whether different types of implied costs affect seeking behavior on the platform. We focus on the three treatment groups (ECONOMICCONSEQUENCES, NON-ANONYMOUS, ANONYMOUS), which all carry different costs of seeking knowledge on the platform. Figure 2 presents average seeking behavior across these three groups.

The lowest seeking behavior is for our baseline setting, ECONOMICCONSEQUENCES (=0.38), which comprises both social psychological and economic costs. By muting economic costs, seeking increases by 29% (p<0.01) in the NON-ANONYMOUS treatment group (=0.49). Subjects in the ANONYMOUS treatment with minimal economic or social psychological costs show a 45% increase in seeking behavior (p<0.01) compared to the ECONOMICCONSEQUENCES treatment. This is 12% (p<0.05) higher than the NON-ANONYMOUS treatment (=0.55).

To control for subjects’ characteristics and test for statistical differences between seeking behavior across treatment groups, Table 3 reports Logit regression results with knowledge seeking behavior as dependent variable. Again, ECONOMICCONSEQUENCES is the baseline treatment group. All specifications use robust standard errors clustered around individuals.13 The table reports common log odds ratio coefficients. For ease of interpretation, we also report tables with the odds ratio in Appendix B.

Column 1 in Table 3 reports the effect of treatments on individual seeking behavior without controls. Seeking behavior in the NON-ANONYMOUS treatment group significantly increases

13 Given that each participant only takes part in a single treatment session, individual fixed effects are multicollinear to the treatments. Therefore, we do not include them in these specifications.
with respect to the baseline ($\beta=0.463; p<0.01$). In addition, the ANONYMOUS treatment group shows even higher seeking behavior compared to the baseline ($\beta=0.702, p<0.01$). Seeking behavior in ANONYMOUS is also significantly higher than in the NON-ANONYMOUS treatment group. In Columns 2 and 3, we control for participant gender and age. The effect of the treatment groups stays robust, while estimates show that older participants have significantly lower seeking behavior. Male participants seek less on the platform, but the effect is (borderline) insignificant (lowest p-value=0.107 in Column 3). Additionally, we control for experience category of individuals in participating in experiments and whether the participant’s native language is German (since the experiment questions were in German). The results are robust to inclusion of these controls. In the full specification in Column 5, ANONYMOUS shows significantly higher seeking behavior than NON-ANONYMOUS ($p=0.032$), and both are significantly higher than the ECONOMICCONSEQUENCES treatment group ($p<0.01$ for both).

Also note that seeking behavior matters for subjects’ payoff resulting from this stage of the experiment. Irrespective of the treatment, the more subjects seek knowledge the higher their payoff. Together with the treatment differences in knowledge seeking behavior this implies that on average, subjects earn most from this stage in ANONYMOUS, followed by NON-ANONYMOUS; subjects earn the least in ECONOMICCONSEQUENCES.15

5.2. Heterogeneous Effects

\textit{Social Image Concerns.} The main results presented above show that knowledge seeking on the platform increases significantly when economic and social psychological costs decline in our treatment groups. To provide confidence that the observed pattern is indeed due to the implied cost, we use a split-sample post-hoc analysis and investigate seeking behavior across

14 As an additional test, we analyze whether improved seeking rates across treatments interact with question type (difficulty)—i.e., do individuals seek more when facing a specific type of questions across treatments. We show that lifting social and economic costs drives subjects to seek more irrespective of question difficulty. Nevertheless, the increase in seeking is slightly more pronounced when subjects face questions with \textit{moderate} difficulty level.

15 Treatment differences in stage-one payoffs are statistically significant for the comparisons of ECONOMICCONSEQUENCES vs. either of the other two treatments and insignificant for ANONYMOUS vs. NON-ANONYMOUS. Details of the analyses are available by the authors upon request.
two samples with low/high social image concerns, split at the median of our post-experimental survey question on the importance of others’ opinions.

Figure 3 shows seeking behavior for low vs. high image concern participants across the three treatment groups. For the low image concern sample, muting social psychological costs (from the NON-ANONYMOUS to the ANONYMOUS treatment group) does not change individual seeking behavior. This implies that participants in this sample are not sensitive to social psychological costs. However, in the high image concern sample, moving from the NON-ANONYMOUS to the ANONYMOUS treatment group is associated with an almost 24% increase in seeking knowledge on the platform (p<0.01). In line with our visual results, Columns 1 and 2 in Table 4 report Logit regressions for the split-sample analysis between low vs. high image concern samples—also reported in the Appendix B with the odds ratio coefficients.

The specification reflects Column 5 in Table 3 (i.e. the full model). Column 1 reports treatment effect for the high image concern sample. The results are similar to the full sample and show that participants in the NON-ANONYMOUS treatment group seek knowledge on the platform significantly less than the ANONYMOUS group (p=0.014). This pattern is absent in the low image concern sample (Column 2). Moving from the baseline (ECONOMICCONSEQUENCES) to NON-ANONYMOUS and ANONYMOUS significantly increases seeking (p=0.00), but there is no statistically significant difference between seeking behavior in the NON-ANONYMOUS and ANONYMOUS treatments (p=0.577) suggesting that social psychological costs do not discourage individuals with low social image concern from seeking knowledge on the platform. This mechanism test is in line with our theoretical arguments and experimental design.

Gender. We split our sample across participants’ gender to capture heterogeneous effects. Figure 4 shows average seeking behavior for female and male participants across treatments.
The treatment effects in the female subsample are similar to the main results. For participating women, moving from the baseline (ECONOMICCONSEQUENCES) to NON-ANONYMOUS, seeking significantly increases by 17% (p<0.1) and increases by another 19% in the ANONYMOUS treatment group (p<0.05). The pattern is quite different for males. Male participants’ seeking behavior increase by 43% when economic consequences are muted. However, as Figure 4 suggests, social psychological costs do not significantly discourage male participants from seeking knowledge on the platform (the difference between mean seeking behavior across NON-ANONYMOUS and ANONYMOUS is insignificant; p=0.82).

Columns 3 and 4 of Table 4 show Logit results for the gender split-sample analysis. Results are consistent with Figure 4. Muting economic costs (from ECONOMICCONSEQUENCES to NON-ANONYMOUS) significantly increases knowledge seeking for male (p=0.00) and female (p=0.015) participants. However, social psychological costs (from NON-ANONYMOUS to ANONYMOUS) discourage female participants (p=0.012), while their effect on male participants is insignificant (p=0.703).

5.3. Alternative Specifications

We now discuss the robustness of our results to alternative specifications. In the previous section, we presented question-level analyses to show the effects of implied costs on individual seeking behavior on the platform. We now discuss individual-level analyses with participants’ seeking behavior as the dependent variable.

We first perform a Mann–Whitney U (Wilcoxon) non-parametric test to investigate the difference between seeking behavior across treatment samples. This test comes without any distributional assumptions. Starting with the main treatment results, the test shows that (individual) seeking is significantly higher in the NON-ANONYMOUS treatment group compared to ECONOMICCONSEQUENCES (p=0.00, two-sided Mann–Whitney U test). Further, our results show that participants seek knowledge more often in the ANONYMOUS treatment compared to the NON-ANONYMOUS treatment group (p-value=0.05, two-sided Mann–Whitney U test).
Next, we check the robustness of the individual-level regression results. Given that the dependent variable (i.e. number of requests posted on the platform; mean=7.08; sd=3.29) is not overdispersed, we use a Poisson model with robust standard errors. The results of the Poisson model are consistent with our Logit estimates in Table 3 and reported in Appendix B.

5.4. Auxiliary Test: Survey Experiment

Lab experiments display high internal validity due to their controlled environment in which potential alternative mechanisms and noises are muted. Nevertheless, this approach may come at the cost of low external validity (Lucas, 2003). If real-world alternatives like randomized controlled trials (RCTs) are not feasible due to resource constraints, online experiments offer a practicable option to address external validity concerns by providing access to large and diverse samples that would be difficult to get in a laboratory environment.

Hence, to complement our findings from the lab, we ran an auxiliary online survey experiment. Participants were recruited via the online experiment platform Prolific,\(^\text{16}\) which lets researchers draw tailor-made samples from a subject pool of more than 70,000 registered subjects for the execution of online surveys or experiments. Since we wanted to understand whether the results from our stylized lab experiment also apply to employees from real organizations, we recruited subjects with full- or part-time employment in large private or publicly listed organizations. By requiring technology (e.g. software) use at work, we further focused on white-collar employees and knowledge workers in particular. Moreover, we opted for a gender-balanced sample to make sure that this dimension does not influence the results. While we recruited worldwide, subjects needed to be fluent in English. That way, we ensured that participants would understand the content of our survey experiment set up in English.

In total, 1504 subjects participated in our online survey experiment, which took place in Winter 2021/2022. To run the experiment, we used the online survey platform Qualtrics.\(^\text{17}\) On average, participants needed about 6 minutes to complete the experiment. They earned a fixed

\(^{16}\) https://www.prolific.co
\(^{17}\) https://www.qualtrics.com
amount of 1.00 GBP payable through Prolific upon completion of the experiment. The procedure of the survey experiment was as follows: First, for all scenarios, subjects were asked to imagine a situation at work in which they have to solve a task for which they need seek knowledge from others. In all scenarios, they further learned about an organizational platform available in their respective firm. In line with our lab experiment, our scenarios were set up in a way that we i) granted anonymity when seeking knowledge on the platform and ii) varied potential social psychological and economic costs associated with posting a question on the platform. The exact wordings used in the survey experiment are in Appendix C:

ANONYMOUS. In the ANONYMOUS scenario, subjects were instructed to imagine that posting questions on their organizational platform is fully anonymous so that their behavior cannot be traced back to them.

NON-ANONYMOUS. In this scenario, subjects were told to imagine that seeking knowledge on their organizational platform is identifiable (i.e. non-anonymous). Nevertheless, subjects implicitly learned that consequences of posting a question are limited, since platform engagement does not involve an exposure and interaction with higher management, i.e. supervisors are not present and active on the platform.

ECONOMIC CONSEQUENCES. In this scenario, subjects were asked to imagine that posting questions on their organizational platform is identifiable (i.e. non-anonymous). Moreover, subjects implicitly learned that their seeking behavior is visible to their supervisor who is also an active member of the platform, and thus, may have tangible consequences, e.g. in the annual performance review conducted by their supervisor.

At the end of each scenario, subjects indicated their likelihood of posting a question on their organizational platform ranging from 0% (“extremely unlikely”) to 100% (“extremely likely”).

To analyze the survey experiment data, we apply both within-subject and between-subject designs. To estimate within-subject effects, we collect three responses per subject, indicating their likelihood of seeking for each scenario. The order of the scenarios is randomized. This
approach has the advantage that all collected data is included and a fixed-effect estimator can be used. To estimate between-subject effects, we only focus on participants’ response to the first scenario presented to them. As we randomized the order of the scenarios, one third of the subjects were presented with the ANONYMOUS scenario first, one third with the NON-ANONYMOUS, and one third with the ECONOMICCONSEQUENCES scenario. The between-subject responses are not contaminated by potential priming effects of reading previous scenarios. The estimates in this approach are more conservative, however only one third of the data is used. Analogous to the lab experiment results, we first present the descriptive statistics and raw outcomes of the survey experiment and then report the results from both estimation approaches.

Figure 5 plots the seeking likelihood for survey respondents across the three scenarios (within-subject). Consistent with our theoretical arguments and results from the lab, respondents have the lowest seeking rate in the ECONOMICCONSEQUENCES scenario where social psychological and economic costs prevail (seeking = 49%). The seeking likelihood improves to around 64% in the NON-ANONYMOUS scenario, where primarily social psychological costs are present. Finally, seeking is highest among respondents in the ANONYMOUS scenario where both costs are lifted (seeking= 83%). The difference between these seeking rates are all statistically different across scenarios (p<0.00).

To further check the effect of our scenarios, we estimate two regression models for the drivers of seeking behavior using both within and between-subject analyses with robust standard errors. In Column (1) of Table 5, we run a fixed-effect estimator, with robust standard errors clustered around respondents. This model uses all 4,512 observations from 1,504 respondents. In Column (2), we estimate a within-subject estimator, and include category dummies to control for respondents’ age group, gender, employment experience, role in the company and industry. As before, we use ECONOMICCONSEQUENCES as the baseline setting. The results support our theoretical arguments and are in line with the findings from the lab. In both models, moving from the baseline to the NON-ANONYMOUS scenario significantly
increases respondents’ seeking rate (p<0.00). There is an almost equally pronounced increase in seeking when respondents are faced with the ANONYMOUS scenarios (p<0.00). The difference between the NON-ANONYMOUS and ANONYMOUS scenarios is also strongly significant in both models (p<0.00). The inclusion of controls in Column (2) does not alter the results, which is reassuring regarding the efficiency of our randomization process. Overall, the results from our auxiliary survey experiment are highly consistent with the lab experimental results.18

6. DISCUSSION AND CONCLUSION

Digital platforms designed to facilitate knowledge exchange in organizations can potentially transform interactions among individual members of the organization from one-to-one to one-to-many if individuals are willing to engage, i.e. post questions. We study the effect of implied costs on individuals’ proclivity to search for knowledge on the platform. We show that costs are linked to the display of personal information of the individual on the organizational platform. In three scenarios, we vary implied social psychological and economic costs both in a laboratory experiment and an auxiliary online survey experiment.

Our findings show that both types of implied costs matter when deciding to seek knowledge on an organizational platform. Further, we find that male and female subjects react differently to changes in the social psychological and economic costs of seeking knowledge. This is noteworthy, given that research on gender differences so far mainly focused on the contributing side (Coffman, 2014) and says little about potential differences in knowledge seeking. In both experimental contexts, females react more than males to lifting implied costs through anonymity. Our results are robust across specifications and datasets, and consistent with the notion that individuals are concerned with their social image when interacting with others.

We combine information from multiple sources to ascertain the face validity of our results. Our stylized lab experiment lets us isolate the effect of implied costs on knowledge

18 For completeness and consistency, we also collected data on social image concern and gender in the survey experiment. Interacting these dimensions with the treatment generates qualitatively similar results to our lab findings: female survey respondents are more sensitive to social psychological costs than male respondents. Also, survey respondents with higher social image concerns react more to the ANONYMOUS treatment.
seeking behavior, which is confirmed in our auxiliary survey experiment with practitioners responding to a hypothetical real-life scenario, and supported by anecdotal evidence from an organization that already uses an organizational platform for knowledge exchange.

Individuals in all three populations are discouraged to actively search for knowledge on platforms for fear of appearing incompetent in front of their peers and superiors. This is consistent with existing findings on individual knowledge search in contexts where organizational platforms are absent (Borgatti & Cross, 2003). Specifically, individuals are more likely to approach others who are more familiar to them and with whom the exchange is perceived as safe and trustful (Hansen & Lovas, 2004; Casciaro & Lobo, 2008). Relatedly, our anecdotal evidence points towards the importance of “safe spaces” in organizational contexts where “actions do not come with (negative) consequences”. Our results indicate that individuals seek too little as their payoffs would improve with more seeking. This result is consistent with Brooks et al. (2015), who show that people refrain from seeking advice to avoid appearing incompetent. This behavior is suboptimal as individuals actually consider advice seekers more competent than non-seekers. Hence, both our findings and Brooks et al. (2015) imply that encouraging seeking can create win-win situations for both employees and organization.

Our results have important practical implications: instead of proposing ways to stimulate benefits (e.g. through monetary incentives) it can be more effective to reduce social psychological and economic costs in digitized organizational exchange settings. Since individual decision making in organizations likely includes both economic and psychological costs, there are different ways to achieve higher levels of knowledge seeking and thus higher participation rates. While anonymous participation of members on the seeking side might be one cost-effective and relatively easy-to-implement tool in stimulating member engagement and boost resource exchange (especially for female employees), our findings also let us identify further, alternative solutions to reduce individuals’ implied costs in seeking knowledge.
We discuss two potential options in particular. First, stimulating changes in organizational culture might lower both economic consequences and psychological costs perceived by knowledge seekers, thus addressing the issue of low levels of user engagement on organizational platforms in the long run. Second, organizations might rethink existing structures, especially when it comes to digitally enabled knowledge exchange processes. Since especially economic consequences from seeking knowledge from others in the organization are linked to (expected) career disadvantages (e.g. due to reputational losses in front of managers and peers), the implied costs of seeking might be lowered if firms create sub-communities, or safe spaces, of homogenous hierarchical layers. This logic, however, should be treated with caution when considering the engagement of marginalized groups. Here, anonymity can prove a powerful tool to democratize access to knowledge by reducing the importance of “whom you know” in the organization (Singh et al, 2010).

Drawing on the notion that “more information can be a bad thing”, our results extend research in at least three domains: First, we inform scholars of platform strategy by underscoring the role of information provision on platforms. While there is wide consensus that transparency helps the efficiency of reputation mechanisms, recommendation systems, and platform performance in general, we show that full information disclosure may be costly for some actors, especially in organizational contexts. Second, research on knowledge exchange has shown that “identity matters” in that certain traits (e.g. gender, social status, hierarchical position) influence the type and amount of knowledge individuals can access (Singh et al, 2010; Poleacovschi et al., 2021). By looking at the seeking side, which “has been nearly absent in the literature” (Grodal et al., 2015), we complement this literature and show that masking an individual’s identity can “level the playing field” among organizational members seeking knowledge. Finally, digital transformation creates opportunities to bundle organizational exchange processes on digital platforms. This could link the productivity gains and scaling
advantages widely documented in the digitization literature (Giustiziero et al., 2021) to the implementation and design of concrete organizational tools.

We close with some potential avenues for future research. First, incorporating the supply side of knowledge exchange could uncover intricate dynamics of knowledge seeking and provision. For example, while anonymizing the seeking side can help engagement on the platform, anonymizing the contribution side may have the opposing effect. Second, it would be interesting to give individuals the option of choosing one-on-one or one-to-many interactions via the platform. That is, will lowering barriers for one-to-many interactions lead to a change in individuals’ knowledge networks, and will this imply that the content of one-on-one interactions changes over time? Finally, while our lab experimental results are corroborated by the auxiliary survey experiment and further anecdotal evidence, future research “in the wild” testing the effect we uncover through a field experiment would be especially promising and may generate additional insights about the long-term implications of lowering the barriers to intra-organizational knowledge exchange. In sum, we hope that our work will spur follow-up work for a better understanding of the strategic design of organizational platforms.
REFERENCES

Figures and Tables

Table 1. Overview on specifics of treatment stages

<table>
<thead>
<tr>
<th>Stage</th>
<th>Sub-stages</th>
<th>Treatments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ECONOMIC CONSEQUENCES</td>
<td>NON-ANONYMOUS</td>
</tr>
<tr>
<td></td>
<td>Both social psychological & economic costs</td>
<td>Only social psychological costs</td>
</tr>
<tr>
<td>Preparatory stage</td>
<td>Taking photos</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Instructions</td>
<td>All Yes</td>
</tr>
<tr>
<td>Stage 1 - Knowledge</td>
<td>Presentation of 15 quiz questions</td>
<td></td>
</tr>
<tr>
<td>Seeking and Quiz 1</td>
<td>Indication for which question a subject asks for help</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Answering of quiz 1 questions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Belief elicitation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Public disclosure of knowledge seeking</td>
<td>with profile picture and first name</td>
</tr>
<tr>
<td>Post-experimental</td>
<td>Judge decides on subjects' incentives for quiz 2</td>
<td>Yes</td>
</tr>
<tr>
<td>stage</td>
<td>Subjects learn incentives for quiz 2</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Answering of quiz 2 questions</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Questionnaire</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Learning about individual success and received help</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Payment</td>
<td></td>
</tr>
</tbody>
</table>

31
Table 2. Summary statistics of variables (lab experiment)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Variable</th>
<th>Observations</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECONOMIC CONSEQUENCES</td>
<td>Seeking</td>
<td>1,275</td>
<td>0.38</td>
<td>0.48</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Age</td>
<td>1,275</td>
<td>26.78</td>
<td>8.87</td>
<td>18</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Gender</td>
<td>1,275</td>
<td>1.51</td>
<td>0.50</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>German</td>
<td>1,275</td>
<td>0.74</td>
<td>0.44</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Experience</td>
<td>1,275</td>
<td>3.54</td>
<td>2.17</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>NON-ANONYMOUS</td>
<td>Seeking</td>
<td>1,350</td>
<td>0.49</td>
<td>0.50</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Age</td>
<td>1,350</td>
<td>26.18</td>
<td>8.23</td>
<td>18</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Gender</td>
<td>1,350</td>
<td>1.54</td>
<td>0.50</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>German</td>
<td>1,350</td>
<td>0.80</td>
<td>0.40</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Experience</td>
<td>1,350</td>
<td>3.52</td>
<td>2.19</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>ANONYMOUS</td>
<td>Seeking</td>
<td>1,320</td>
<td>0.55</td>
<td>0.50</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Age</td>
<td>1,320</td>
<td>27.91</td>
<td>10.53</td>
<td>18</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Gender</td>
<td>1,320</td>
<td>1.33</td>
<td>0.47</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>German</td>
<td>1,320</td>
<td>0.84</td>
<td>0.37</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Experience</td>
<td>1,320</td>
<td>3.19</td>
<td>2.22</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>
Table 3. Logit estimations for the main treatment effects (Lab Experiment)

<table>
<thead>
<tr>
<th>Logit Regressions</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dep. Var.:</td>
<td>Seeking</td>
<td>Seeking</td>
<td>Seeking</td>
<td>Seeking</td>
<td>Seeking</td>
</tr>
<tr>
<td>Baseline:</td>
<td>Economic-Consequences</td>
<td>Economic-Consequences</td>
<td>Economic-Consequences</td>
<td>Economic-Consequences</td>
<td>Economic-Consequences</td>
</tr>
<tr>
<td></td>
<td>0.463*** (0.120)</td>
<td>0.470*** (0.120)</td>
<td>0.463*** (0.119)</td>
<td>0.476*** (0.120)</td>
<td>0.475*** (0.121)</td>
</tr>
<tr>
<td>Treatment:</td>
<td>Anonymous</td>
<td>Anonymous</td>
<td>Anonymous</td>
<td>Anonymous</td>
<td>Anonymous</td>
</tr>
<tr>
<td></td>
<td>0.702*** (0.129)</td>
<td>0.678*** (0.130)</td>
<td>0.699*** (0.127)</td>
<td>0.720*** (0.127)</td>
<td>0.741*** (0.128)</td>
</tr>
<tr>
<td>Gender</td>
<td>-0.144 (0.102)</td>
<td>-0.163 (0.101)</td>
<td>-0.155 (0.101)</td>
<td>-0.135 (0.103)</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>-0.017*** (0.005)</td>
<td>-0.017*** (0.005)</td>
<td>-0.0166*** (0.00504)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>German</td>
<td>-0.193 (0.127)</td>
<td>-0.172 (0.126)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experience Category</td>
<td>Included</td>
<td>Included</td>
<td>Included</td>
<td>Included</td>
<td>Included</td>
</tr>
<tr>
<td>Observations</td>
<td>3,945</td>
<td>3,945</td>
<td>3,945</td>
<td>3,945</td>
<td>3,945</td>
</tr>
</tbody>
</table>

Note: Robust standard errors are in parentheses and clustered around individuals. *** p<0.01, ** p<0.05, * p<0.1. The estimated constants are not reported in the Table.
Table 4. Logit estimations for the main treatment effects across image concern and gender subsamples (Lab Experiment)

<table>
<thead>
<tr>
<th>Logit Regression</th>
<th>Social Image Concerns</th>
<th>Gender</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Dep. Var.</td>
<td>Seeking</td>
<td>Seeking</td>
</tr>
<tr>
<td>Baseline:</td>
<td>ECONOMIC-CONSEQUENCES</td>
<td></td>
</tr>
<tr>
<td>Treatment:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NON-ANONYMOUS</td>
<td>0.506***</td>
<td>0.704***</td>
</tr>
<tr>
<td></td>
<td>(0.190)</td>
<td>(0.191)</td>
</tr>
<tr>
<td>Treatment:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANONYMOUS</td>
<td>1.039***</td>
<td>0.586***</td>
</tr>
<tr>
<td></td>
<td>(0.227)</td>
<td>(0.192)</td>
</tr>
<tr>
<td>Gender</td>
<td>0.0939</td>
<td>-0.132</td>
</tr>
<tr>
<td></td>
<td>(0.173)</td>
<td>(0.170)</td>
</tr>
<tr>
<td>Age</td>
<td>-0.0108</td>
<td>-0.0287***</td>
</tr>
<tr>
<td></td>
<td>(0.00827)</td>
<td>(0.00800)</td>
</tr>
<tr>
<td>German</td>
<td>-0.266</td>
<td>-0.0552</td>
</tr>
<tr>
<td></td>
<td>(0.235)</td>
<td>(0.187)</td>
</tr>
<tr>
<td>Experience Category</td>
<td>Included</td>
<td>Included</td>
</tr>
<tr>
<td>Observations</td>
<td>1,470</td>
<td>1,665</td>
</tr>
</tbody>
</table>

Note: Robust standard errors are in parentheses and clustered around individuals. *** p<0.01, ** p<0.05, * p<0.1. The estimated constants are not reported in the Table.
Table 5. OLS estimations for the main treatment effects (Survey Experiment)

<table>
<thead>
<tr>
<th>OLS Regression</th>
<th>(1) Within-subject</th>
<th>(2) Between-subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dep. Var.:</td>
<td>Seeking</td>
<td>Seeking</td>
</tr>
<tr>
<td>Baseline:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECONOMIC-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONSEQUENCES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NON-ANONYMOUS</td>
<td>14.73***</td>
<td>12.19***</td>
</tr>
<tr>
<td></td>
<td>(0.622)</td>
<td>(2.042)</td>
</tr>
<tr>
<td>Treatment:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANONYMOUS</td>
<td>33.75***</td>
<td>25.58***</td>
</tr>
<tr>
<td></td>
<td>(0.879)</td>
<td>(1.916)</td>
</tr>
<tr>
<td>Controls</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>4,512</td>
<td>1,504</td>
</tr>
<tr>
<td>Number of respondents</td>
<td>1,504</td>
<td>1,504</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.410</td>
<td>0.163</td>
</tr>
</tbody>
</table>

Note: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. The standard errors of the fixed-effect model in Column (1) are clustered around respondents. The within-subject model in Column (2) include controls and category dummies to account for respondents’ age group, gender, employment experience, role in the company and industry. The estimated constants are not reported in the Table.
Figure 1. Average seeking behavior across the question difficulty categories. The illustrated confidence intervals are calculated at 90% level.
Figure 2. Average seeking behavior across the three main treatment groups for the lab experiment. The illustrated confidence intervals are calculated at 90% level.
Figure 3. Average seeking behavior for low/high image concern participants across the three main treatment groups in the lab experiment. The illustrated confidence intervals are calculated at 90% level.

Figure 4. Average seeking behavior for female/male participants across the three main treatment groups in the lab experiment. The illustrated confidence intervals are calculated at 90% level.
Figure 5. Average seeking likelihood across the three main treatment groups in the survey experiment. The illustrated confidence intervals are calculated at 90% level.
Instructions
Welcome to this experiment. In this experiment you can - depending on your decisions - earn a not inconsiderable amount of money. It is therefore important that you read these explanations carefully.

In any case you will receive 6,00 Euro for the complete participation in this experiment. The experiment consists of two parts and a short questionnaire. After the completion of the two parts and the questionnaire you will receive your payment.

Please note that from now on and during the whole experiment you are not allowed to talk to the other participants. Please do not use mobile phones or similar devices. If you have any questions, please contact the experiment instructor via hand signal or during the experiment by pressing the F1 help key.

This experiment will be evaluated anonymously.

General information on roles
In this experiment you take on either one of the two roles, A or B. Each participant is randomly assigned one of these two roles. The assigned role does not change during the experiment.

Role A: „Answer questions“:
This role is randomly assigned to 18 participants. Participants in this role are asked questions which they have to answer, as explained in more detail below. Basically, every correctly answered question increases the payout in this experiment.

Role B: „Define payment to other participants“:
This role is randomly assigned to one participant. The participant in this role is not active in part 1 of the experiment, but is active in part 2. In this part of the experiment, she decides how much other role-A-participants are paid for correctly answering questions in part 2 of the experiment.
Part 1

In this part, each participant in role A answers questions. There are four possible answers given, of which one is always correct. Each participant A will be asked 15 questions. The questions differ for each participant and are assigned randomly. For each correct answer a participant A receives 1.25 Euro. Wrong answers will not be rewarded.

For each of the questions, the participant with the role A can decide whether to solve the question independently or to seek advice. It is an electronic advice, which solves the question correctly with a probability of 80%. With a remaining probability of 20%, no advice will be given - despite the request for council - and the participant’s answer counts instead.

The participant A pays 0.10 Euro (10 Eurocent) for every time advice is sought.

The procedure for Part 1 is as follows:

1. Each participant A will be shown the 15 questions and their respective answers one after another. Each of the questions and respective answers are displayed for 20 seconds at a time so that the participant A can familiarize herself with the content.
2. Afterwards the participant A sees an overview page with all questions and answer options. She then decides on which question she wants to ask for advice.
3. Each participant A answers the 15 questions (either compulsory for those questions for which no advice has been sought or as a backup in the event that seeking is unsuccessful)
4. Each participant A will see an overview of the seeking behavior of all participants A in the session. In other words, each participant A can see the specific questions for which other participants have asked advice for. After a complete overview of all participants, 18 detailed views of every participant A’s seeking behavior are displayed.

The following images show exemplary

a) the overview screen, at which the “seeking decision” is taken (see step 2),
b) an overview of how all participants A in this session sought advice (see step 4) and
c) a detailed view of your seeking behavior as participant A (see step 4).
a) On this screen, as participant A, you are shown an overview of the 15 questions and their respective answer options (questions left blank here) and **decide on whether to seek advice**. Below, you decide for every question separately whether you seek advice. If you decide to seek advice for a question, this question will be solved by the electronic advice with a probability of 80 percent. Each advice seeking costs 0.10 EUR.

b) This screen displays the **overview of the seeking behavior** of all participants A of this session. From left to right, participants are shown (i) the photos and names of participants A, (ii) an (anonymous) participant specific identification number, (iii) the absolute number of questions participants sought advice for, and (iv) a selection of each participant’s questions, for which advice was sought (left blank here). The overview is split across two screens (9 participants each).
c) On this screen, **other participants A see your seeking behaviour in greater detail.** They are shown your photo, your (anonymous) participant specific identification number, the absolute number of questions you sought advice for (to the left of the screen, number of questions left blank here), and the precise questions and answer options, for which advice was sought (left blank here).

Part 2

In this part, each participant with role A again answers questions, yet this time without the option to seek advice. Each participant A answers **10 questions in this second round.** The participant with role B determines for this part for each participant A the amount of the payout per correctly solved question (details below).

Determining payout questions Part 2

Participants A can receive either **0.25 Euro, 1.00 Euro or 1.75 Euro** per correctly solved question in the round of questions in part 2. Exactly 6 participants A receive 0.25 Euro, 6 participants A receive 1.00 Euro and 6 participants receive 1.75 EUR per correctly solved question. **Participant B decides, which payment each participant A receives per correctly solved question.**

Before participant B decides how much each participant A should be paid for each correctly answered question in the round of questions in part 2, **participant B receives information on how participants A have sought advice in the previous part 1.** She sees the seeking behavior of all participants A from Part 1 both in a general overview of all participants and in a detailed view for each individual participant.
The following images show examples of the following information and decision screens:

d) Overview for participant B of how all participants A of this session have sought advice in part 1,
e) preliminary decision by participant B on the amount of each participant A’s payout in the second round of questions per correctly resolved question, and
f) overview of decisions by participant B on the amount of each participant A’s payout in the second round of questions per correctly solved question.

d) At the beginning of part 2, participant B is presented an overview on seeking behavior of all participants A in part 1. From left to right, she is presented (i) the (anonymous) participant specific identification number, (ii) the absolute number of questions participants sought advice for, and (iii) a selection of each participant’s questions, for which advice was sought (left blank here). The overview is split across two screens (9 participants each).
e) On this screen, participant B is shown the **part-one seeking behaviour of each participant A in greater detail**. She is shown the (anonymous) participant specific identification number, the absolute number of questions you sought advice for (to the left of the screen, number of questions left blank here), and the precise questions and answer options, for which advice was sought (left blank here). Below, by moving the slider, participant B makes a preliminary decision on **the amount**, each participant A will receive per correctly solve question in the **second round of questions**.
f) **Overview of participant B’s decision** on the amount each participant A will receive in the second round of questions (per correctly answered question). By moving a slider in the field “assessment”, participant B can adjust her preliminary decisions. Highlighted in blue, she is shown the consequences of her assessment, i.e. a participant A’s amount per correctly solved question (question round 2). The overview is split across two screens (9 participants each). Participant B can switch between the screens until she has made her final decision.

![Table of participant earnings](image)

Answering questions in part 2

After participant B has decided how much each participant A should be paid for each correctly answered question in the round of questions of part 2 (i.e. 0.25 Euro, 1.00 Euro or 1.75 Euro), this decision will be communicated to each participant A individually. This means that each participant A only receives information about her own payout per correctly solved question.

Subsequently, each participant A is asked **10 questions** one after another, which she has to answer.

Payment for participant B

Participant B will not receive any payout for part 1, but a payout for part 2. Her payout depends on the earnings of all participants A in part 2. More specifically, she will receive a payout equal to 20 percent of the earnings of each participant A in part 2.
Examples:

a) If a participant A answers 5 out of 10 questions correctly with a payout of 0.25 EUR, participant A receives 0.25 x 5 = 1.25 EUR. Participant B accordingly receives 20 percent of the 1.25 EUR = 0.30 EUR.

b) If another participant A answers 8 out of 10 questions correctly with a payout of 1.75 EUR, this participant A receives an earnings of 1.75 x 8 = 14.00 Euro. Participant B then receives 20 percent x 14 EUR = 2.80 EUR.

Thus, participant B earns a share of what all 18 participants A earn in part 2. Part 2 then is followed by a short questionnaire; after which the experiment ends and participants receive their payments.

This part is followed by a short questionnaire. Then the experiment ends and you will receive your payment.
Instructions
Welcome to this experiment. In this experiment you can - depending on your decisions - earn a not inconsiderable amount of money. It is therefore important that you read these explanations carefully.

In any case you will receive 6.00 Euro for the complete participation in this experiment. The experiment consists of one part and a short questionnaire. After the completion of the part and the questionnaire you will receive your payment.

Please note that from now on and during the whole experiment you are not allowed to talk to the other participants. Please do not use mobile phones or similar devices. If you have any questions, please contact the experiment instructor via hand signal or during the experiment by pressing the F1 help key.

This experiment will be evaluated anonymously.

General information on role
In this experiment, you take on the role of answering questions. The role does not change in the course of the experiment. All 18 participants take on this role. Participants in this role are asked - as explained in more detail below - questions that need to be answered. Basically, every correctly answered question increases the payout in this experiment.

Part 1
In this part, each participant answers questions. There are four possible answers given, of which one is always correct. Each participant will be asked 15 questions. The questions differ for each participant and are assigned randomly. For each correct answer a participant receives 1.25 Euro. Wrong answers will not be rewarded.

For each of the questions, the participant can decide whether to solve the question independently or to seek advice. It is an electronic advice, which solves the question correctly with a probability of 80%. With a remaining probability of 20%, no advice will be given - despite the request for council - and the participant's answer counts instead.

The participant pays 0.10 Euro (10 Eurocent) for every time advice is sought.

The procedure for Part 1 is as follows:

1. Each participant will be shown the 15 questions and their respective answers one after another. Each of the questions and respective answers are displayed for 20 seconds at a time so that the participant can familiarize herself with the content.
2. Afterwards the participant sees an overview page with all questions and answer options. She then decides on which question she wants to ask for advice.
3. Each participant answers the 15 questions (either compulsory for those questions for which no advice has been sought or as a backup in the event that seeking is unsuccessful)
4. Each participant will see an overview of the seeking behavior of all participants in the session. In other words, each participant can see the specific questions for which other participants have asked advice for. After a complete overview of all participants, 18 detailed views of every participant’s seeking behavior are displayed.

The following images show exemplary

a) the overview screen, at which the “seeking decision” is taken (see step 2),
b) an overview of how all participants in this session sought advice (see step 4) and
c) a detailed view of your seeking behavior (see step 4).

a) On this screen you are shown an overview of the 15 questions and their respective answer options (questions left blank here) and **decide on whether to seek advice**. Below, you decide for every question separately whether you seek advice. If you decide to seek advice for a question, this question will be solved by the electronic advice with a probability of 80 percent. Each advice seeking costs 0.10 EUR.
b) This screen displays the **overview of the seeking behavior** of all participants of this session. From left to right, participants are shown (i) the photos and names of participants, (ii) an (anonymous) participant specific identification number, (iii) the absolute number of questions participants sought advice for, and (iv) a selection of each participant’s questions, for which advice was sought (left blank here). The overview is split across two screens (9 participants each).
c) On this screen, **other participants see your seeking behaviour in greater detail**. They are shown your photo, your (anonymous) participant specific identification number, the absolute number of questions you sought advice for (to the left of the screen, number of questions left blank here), and the precise questions and answer options, for which advice was sought (left blank here).

This part is followed by a short questionnaire. Then the experiment ends and you will receive your payment.
Instructions

Welcome to this experiment. In this experiment you can - depending on your decisions - earn a not inconsiderable amount of money. It is therefore important that you read these explanations carefully.

In any case you will receive 6.00 Euro for the complete participation in this experiment. The experiment consists of one part and a short questionnaire. After the completion of the part and the questionnaire you will receive your payment.

Please note that from now on and during the whole experiment you are not allowed to talk to the other participants. Please do not use mobile phones or similar devices. If you have any questions, please contact the experiment instructor via hand signal or during the experiment by pressing the F1 help key.

This experiment will be evaluated anonymously.

General information on role

In this experiment, you take on the role of answering questions. The role does not change in the course of the experiment. All 18 participants have this role. Participants in this role are asked - as explained in more detail below - questions that need to be answered. Basically, every correctly answered question increases the payout in this experiment.

Part 1

In this part, each participant answers questions. There are four possible answers given, of which one is always correct. Each participant will be asked 15 questions. The questions differ for each participant and are assigned randomly. For each correct answer a participant receives 1.25 Euro. Wrong answers will not be rewarded.

For each of the questions, the participant can decide whether to solve the question independently or to seek advice. It is an electronic advice, which solves the question correctly with a probability of 80%. With a remaining probability of 20%, no advice will be given - despite the request for council - and the participant's answer counts instead.

The participant pays 0.10 Euro (10 Eurocent) for every time advice is sought.

The procedure for Part 1 is as follows:

1. Each participant will be shown the 15 questions and their respective answers one after another. Each of the questions and respective answers are displayed for 20 seconds at a time so that the participant can familiarize herself with the content.
2. Afterwards the participant sees an overview page with all questions and answer options. She then decides on which question she wants to ask for advice.
3. Each participant answers the 15 questions (either compulsory for those questions for which no advice has been sought or as a backup in the event that seeking is unsuccessful)

4. Each participant will see an overview of the seeking behavior of all participants in the session. In other words, each participant can see the specific questions for which other participants have asked advice for. After a complete overview of all participants, 18 detailed views of every participant’s seeking behavior are displayed.

The following images show exemplary

a) the overview screen, at which the “seeking decision” is taken (see step 2),

b) an overview of how all participants in this session sought advice (see step 4) and

c) a detailed view of your seeking behavior (see step 4).

a) On this screen you are shown an overview of the 15 questions and their respective answer options (questions left blank here) and decide on whether to seek advice. Below, you decide for every question separately whether you seek advice. If you decide to seek advice for a question, this question will be solved by the electronic advice with a probability of 80 percent. Each advice seeking costs 0.10 EUR.

b) This screen displays the **overview of the seeking behavior** of all participants of this session. From left to right, participants are shown (i) an (anonymous) participant specific identification number, (ii) the absolute number of questions participants sought advice for, and (iii) a selection of each participant’s questions, for which advice was sought (left blank here). The overview is split across two screens (9 participants each).
c) On this screen, other participants see your seeking behaviour in greater detail. They are shown your (anonymous) participant specific identification number, the absolute number of questions you sought advice for (to the left of the screen, number of questions left blank here), and the precise questions and answer options, for which advice was sought (left blank here).

This part is followed by a short questionnaire. Then the experiment ends and you will receive your payment.
APPENDIX B

Table B1. Replication of Table 3, reporting odds ratio as coefficients

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dep. Var.: Seeking</td>
<td>Odds ratio</td>
<td>Odds ratio</td>
<td>Odds ratio</td>
<td>Odds ratio</td>
<td>Odds ratio</td>
</tr>
<tr>
<td>Baseline: ECONOMIC-CONSEQUENCES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment: NON-ANONYMOUS</td>
<td>1.590***</td>
<td>1.599***</td>
<td>1.589***</td>
<td>1.609***</td>
<td>1.609***</td>
</tr>
<tr>
<td></td>
<td>(0.191)</td>
<td>(0.191)</td>
<td>(0.190)</td>
<td>(0.193)</td>
<td>(0.194)</td>
</tr>
<tr>
<td>Treatment: ANONYMOUS</td>
<td>2.019***</td>
<td>1.970***</td>
<td>2.011***</td>
<td>2.055***</td>
<td>2.099***</td>
</tr>
<tr>
<td></td>
<td>(0.261)</td>
<td>(0.256)</td>
<td>(0.255)</td>
<td>(0.261)</td>
<td>(0.268)</td>
</tr>
<tr>
<td>Gender</td>
<td>0.866</td>
<td>0.849</td>
<td>0.856</td>
<td>0.874</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0886)</td>
<td>(0.0859)</td>
<td>(0.0869)</td>
<td>(0.0898)</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>0.983***</td>
<td>0.983***</td>
<td>0.984***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.00486)</td>
<td>(0.00486)</td>
<td>(0.00496)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>German</td>
<td>0.824</td>
<td>0.842</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.105)</td>
<td>(0.106)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experience Category</td>
<td>Included</td>
<td>Included</td>
<td>Included</td>
<td>Included</td>
<td>Included</td>
</tr>
<tr>
<td>Observations</td>
<td>3,945</td>
<td>3,945</td>
<td>3,945</td>
<td>3,945</td>
<td>3,945</td>
</tr>
</tbody>
</table>

Note: Robust standard errors are in parentheses and clustered around individuals. *** p<0.01, ** p<0.05, *p<0.1. The estimated constants are not reported in the Table.
Table B2. Replication of Table 4, reporting odds ratio as coefficients

<table>
<thead>
<tr>
<th>Social Image Concerns</th>
<th>Gender</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dep. Var.: Seeking</td>
<td></td>
</tr>
<tr>
<td>Baseline: ECONOMIC-CONSEQUENCES</td>
<td></td>
</tr>
<tr>
<td>Treatment:</td>
<td></td>
</tr>
<tr>
<td>NON-ANONYMOUS</td>
<td></td>
</tr>
<tr>
<td>1.659*** (0.315)</td>
<td>1.807*** (0.307)</td>
</tr>
<tr>
<td>2.021*** (0.386)</td>
<td>1.574** (0.295)</td>
</tr>
<tr>
<td>Treatment: ANONYMOUS</td>
<td></td>
</tr>
<tr>
<td>2.827*** (0.643)</td>
<td>1.937*** (0.346)</td>
</tr>
<tr>
<td>1.797*** (0.345)</td>
<td>2.326*** (0.425)</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
</tr>
<tr>
<td>1.098 (0.190)</td>
<td>-</td>
</tr>
<tr>
<td>0.876 (0.149)</td>
<td>-</td>
</tr>
<tr>
<td>Age</td>
<td></td>
</tr>
<tr>
<td>0.989 (0.00818)</td>
<td>0.971*** (0.00797)</td>
</tr>
<tr>
<td>0.972*** (0.00778)</td>
<td>0.993 (0.00634)</td>
</tr>
<tr>
<td>German</td>
<td></td>
</tr>
<tr>
<td>0.767 (0.180)</td>
<td>1.165 (0.215)</td>
</tr>
<tr>
<td>0.946 (0.177)</td>
<td>0.670** (0.111)</td>
</tr>
<tr>
<td>Experience Category</td>
<td></td>
</tr>
<tr>
<td>Included</td>
<td>Included</td>
</tr>
<tr>
<td>Included</td>
<td>Included</td>
</tr>
<tr>
<td>Observations</td>
<td>1,470</td>
</tr>
</tbody>
</table>

Note: Robust standard errors are in parentheses and clustered around individuals. *** p<0.01, ** p<0.05, * p<0.1. The estimated constants are not reported in the Table.
Table B3. Replication of Table 3 with Poisson specification

<table>
<thead>
<tr>
<th>Poisson Regression</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dep. Var.:</td>
<td>Seeking</td>
<td>Seeking</td>
<td>Seeking</td>
<td>Seeking</td>
<td>Seeking</td>
</tr>
<tr>
<td>Baseline: ECONOMIC-CONSEQUENCES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NON-ANONYMOUS</td>
<td>0.263*** (0.0687)</td>
<td>0.266*** (0.0682)</td>
<td>0.262*** (0.0678)</td>
<td>0.269*** (0.0678)</td>
<td>0.268*** (0.0680)</td>
</tr>
<tr>
<td>ANONYMOUS</td>
<td>0.378*** (0.0692)</td>
<td>0.365*** (0.0695)</td>
<td>0.373*** (0.0676)</td>
<td>0.384*** (0.0673)</td>
<td>0.393*** (0.0672)</td>
</tr>
<tr>
<td>Gender</td>
<td>-0.0752 (0.0537)</td>
<td>-0.0849 (0.0526)</td>
<td>-0.0811 (0.0526)</td>
<td>-0.0709 (0.0530)</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>-0.00937*** (0.00284)</td>
<td>-0.00912*** (0.00285)</td>
<td>-0.00913*** (0.00291)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>German</td>
<td>-0.0987 (0.0620)</td>
<td>-0.0864 (0.0612)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experience Category</td>
<td>Included</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>3,945</td>
<td>3,945</td>
<td>3,945</td>
<td>3,945</td>
<td>3,945</td>
</tr>
</tbody>
</table>

Note: Robust standard errors are in parentheses and clustered around individuals. *** p<0.01, ** p<0.05, * p<0.1. The estimated constants are not reported in the Table.
APPENDIX C

Texts of the scenarios and survey used for the survey experiment

Survey Scenario Treatments

[Basic scenario/information all treatments]

Imagine the following situation:
You work for a large organization. While working on a project, you encounter a question that you are not fully sure how to answer by yourself. Finding an answer could be instrumental to finishing this project successfully. The question is in your area of expertise, and your colleagues and your direct supervisor may expect you to know the answer. You do not know whom to address directly to receive a correct answer to your question.

Your organization has an internal knowledge exchange platform and you consider posting the question on this online platform, where you are likely to receive the correct answer to your question.

[Treatment ANONYMOUS] On the knowledge exchange platform, you post questions anonymously, i.e., your questions cannot be attributed to you. All employees of your organization can access the knowledge exchange platform. This means that, in principle, all employees can see the questions posted by your account, and answer them. You know that your direct supervisor does not use the knowledge exchange platform at all.

[Treatment NON-ANONYMOUS] On the knowledge exchange platform, you post questions under your real name, i.e., your questions can be attributed to you. All employees of your organization can access the knowledge exchange platform. This means that, in principle, all employees can see the questions posted by your account, and answer them. You know that your direct supervisor does not use the knowledge exchange platform at all.
[Treatment ECONOMICCONSEQUENCES] On the knowledge exchange platform, you post questions *under your real name*, i.e., your questions *can be attributed to you*. All employees of your organization can access the knowledge exchange platform. This means that, in principle, all employees can see the questions posted by your account, and answer them. You know that your direct supervisor frequently monitors the questions posted on the knowledge exchange platform. Next week, you will *meet your supervisor for your annual performance review*.

[All treatments] Question

Under the above conditions, how likely are you to post the question on the knowledge exchange platform?

[Slider ranging from 0 “Extremely unlikely” to 100 “Extremely likely”]
APPENDIX D

Exemplary Screenshot of a Real-life Organizational Platform