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Credit Capital Diversification 4

Abstract

We present a simple adjustment to the single-faarexdtit capital model, which recognizes the
diversification from a multi-factor credit settinffhe model can be applied to extend the Basel Il
regulatory framework to a general multi-factor iseft thus allowing for more accurate modeling
of diversification for portfolios across variousatclasses, sectors and regions, and in particular

within mixed portfolios in developed and emergirmg@omies.

We introduce the concepts oflaversification factorat the portfolio level, as well asarginal
diversification factorsat the obligor or sub-portfolio level, which fuethcapture diversification
contributions to the portfolio. We estimate theatsification factor for a family of multi-factor
models, and show that it can be expressed as tdnmf two parameters that broadly capture
the size concentration and the average cross-samt@iation. This model supports an intuitive
capital allocation methodology, where the divecsifion contribution of a given sector can be
further attributed to three components: the overattfolio diversification, the relative size ofth
sector to the overall portfolio, and its cross-eecbrrelation. The estimated diversification facto
can be tabulated for the implementation of creditfplio decision management support tools as
well as potential regulatory applications. As & risanagement tool, it can be used to understand
concentration risk, capital allocation and sengigsg, as well as to compute “real-time” marginal

risk contributions for new deals or portfolios.

4 The views expressed in this paper are solely thbtee authors. The authors would like to thankhaiel
Pykhtin, Michael Gordy for valuable discussions andgestions on the methodology and the paper.
Further thanks to Helmut Mausser and the parti¢fpianthe workshop “Concentration Risk in Credit
Portfolios” (Eltville, November 2005) for their uUsécomments on earlier versions of the paper. Dan

Rosen further acknowledges the kind support offkkls Institute and Algorithmics Inc.



1. Introduction

Minimum credit capital requirements under the neas@ Il Capital Accord (Basel Committee of
Banking Supervision, 2003) are based on the estmaff the 99.9% systemic credit risk for a
portfolio (the risk of an asymptotically fine-graih portfolio) under a one-factor Merton type
credit model. This results in a closed form solutivhich provides additive risk contributions for
each position and that is also easy to implememt. tvo key limitations of this model are that it

measures only systemic credit risk, and it mightreoognize the full impact of diversification.

The first shortcoming has been addressed in anytasal manner, most notably with the
introduction of a granularity adjustment (Gordy 30Wilde 2001, Martin and Wilde 2002). The
second problem is perhaps more difficult to addeesdytically but has greater impact, especially
for institutions with broad geographical and astegrsification. Diversification is one of the key
tools for managing credit risk, and it is vital thiae credit portfolio framework, used to calculate

and allocate credit capital, effectively modelstfmiio diversification effects.

Portfolio granularity and full diversification with a multi-factor setting can be effectively
addressed within a simulation-based credit podafiamework. However, there are benefits for
seeking analytical, closed-form, models both fayutatory applications as well as for credit
portfolio management. While the use of credit pmidf simulation-based models is now
widespread, they are computationally intensive mag not provide further insights into sources
of risk. They are also not efficient for the caltidn of various sensitivities, or provide pradtica
solutions for real-time decision support. Furthemmahe accurate calculation of marginal capital
contributions in a simulation framework has provenbe a difficult computational problem,
which is currently receiving substantial attentiivom both academics and practitioners (see
Kalkbrener et al. 2004, Merino and Nyfeler, 2004asserman 2005). Analytical or semi-
analytical methods generally provide tractable timhs for capital contributions (c.f. Martin et al.
2001, Kurth and Tasche 2003).

In terms of multi-factor credit portfolio modelingykhtin (2004) recently obtains an elegant,
analytical multi-factor adjustment, which extentle granularity adjustment technique of Gordy,
Martin and Wilde. This method can also be used equffectively to compute capital
contributions numerically (given its closed formw@n to compute portfolio capital). However,

the closed-form expressions for capital contrimgioan be quite intricate.



In this paper, we present an adjustment to thdesfiagtor credit capital model, which recognizes
the diversification from a multi-factor setting amhich can be tabulated easily for risk
management decision support and potential regylapplication. The objective is to obtain a
simple and intuitive approximation, based only osnaall number of parameters, and which is

perhaps less general and requires some calibratidn

To develop the model, we introduce the conceptdifarsification factoy DF, defined as

mf
DF:% , DF <1 (1)

where EC™ denotes the diversified economic capital from altifactor credit model and

EC® is the economic capital arising from the singletda model.

For a givena percentile level (e.ga = 0.1%), we seek an approximation to the multi-factor

economic capital of the form

EC™ (a; 0= DF(a; 0 EC* (a) @)

with DF(a'; D) <1 a scalar function of a small number of (yet tadletermined) parameters. A

simple expression of the form (2) basically allayssto express the diversified capital as a
function of the “additive” bottoms-up capital fraamone-factor model (e.g. the Basel Il model),
and to tabulate the diversification factor (asrcfion of say two or three parameters). For

potential regulatory use, we may also seebraservativgparameterization of equation (2).

We estimate the diversification factor for a fanofymulti-factor models, and show that it can be
expressed as a function of two parameters thatlhreapture theize concentratioand the

average cross-sector correlation

The diversification factor provides a practicaknmeanagement tool to understand concentration
risk, capital allocation and correlations, and @asi capital sensitivities. For this purpose, we

further introducemarginal diversification factorat the obligor or sub-portfolio level, which



further account for the diversification contributsoto the portfoli®. The model (2) supports an
intuitive capital allocation methodology, where ttieersification contribution of a given sector
can be further attributed to three componentsottezall portfolio diversification, the sector’s
relative size to the overall portfolio, and its €sesector correlation. Finally, for a given potitipl
we can readily fit the model to a full multi-factoternal credit portfolio model (which may be
simulation based). The resulting implied paramedéthe model provide simple risk and
sensitivity indicators, which allow us to understdhe sources of risk and concentration in the
portfolio. The fitted model can then be used asa&firal tool for real-time computation of

marginal capital for new loans or other creditiastents, and for further sensitivity analysis.

The rest of the paper is organized as follows. W fotivate the use of multi-factor models
through an empirical analysis of possible rangesssét correlations across various economies,
and particularly across developed and emergingtdesnWe then introduce the underlying
credit model, the diversification factor and itsigeal analytical justification, and the resulting
capital allocation methodology. Thereafter, we stawr the diversification factor can be
estimated numerically using a full credit portfatimdel and Monte Carlo simulations. We
provide several parameterization exercises in tméext of the Basel Il formulae for wholesale
exposures. Finally, we discuss the applicatiomefrhodel as a risk management tool, in
conjunction with an internal multi-factor econorgipital model, to understand concentration

risk and capital allocation, as well as for reatdgimarginal economic capital calculation.

2. Motivation — Example: Estimating Correlations in Developed and

Emerging Economies

Diversification is one of the key tools for managuredit risk and optimally allocating credit
capital. The accurate modeling of diversificati@s important consequences for institutions with
broad geographical and asset coverage, as wall dsdse actively managing credit risk. This is

especially true within international banks, wittbstantial credit activities across different

5This paper is closely related to Tasche (2006) further presents a mathematical foundation for the
diversification factor and diversification contriiians. The author presents a two-dimensional exampl
which has an analytical solution, and more gength# contribution expressions require integrals of

dimensionN-1, for problems of dimensioN.



countries. Thus, many institutions today have wdpiction either internally developed or

commercial multi-factor credit portfolio models ass their wholesale and retail portfolios.

In this section, we motivate the importance of gsimulti-factor models through an empirical
correlation analysis. As is common practice, weacggty correlations as a proxy for asset
correlations (see for example Gupton et al 298Rkhough there are many known limitations for
using equity correlations, our objective is onlyptovide an intuitive picture for the ranges of
asset correlations, as well as for the numberaibfa required to model these within and across
developed and emerging economiBlsus, the broad, qualitative, conclusions we diraw the

analysis should not be impacted by this crude aqmation.

We use as proxies the stock market indices of ifferent countries. Table 1 displays the average
correlations between countries within developedemedrging economies and across both groups
on the basis of monthly returns over a period péars (1996-2003). The average correlation
between the indices of developed economies starateand 74%, whereas the average
correlation between developed and emerging ecormmsewell as between emerging

economies, is around 40%. The Apperdither presents the detailed correlation matrix.

Developed Emerging
economies economies
Developed
economies 0.74 0.41
Emerging
economies 0.41 0.40

Table 1. Average asset correlations from stock magk indices

Alternatively, we can use aggregate indices instéacsing individual market indices for each
countnf. In this case, the correlation between the twgregpted global indices is 61%, which is

still not very high in spite of the fact that cashesiing general indices tends to raise correlations.

To give a better characterization of the multi-factature of the problem, we perform a principal
components analysis (PCA) of the individual stockkat index returns. Table 2 presents the

percentage of variance explained by the factordtieg from the PCA. A single factor accounts

6 Based on series of monthly returns over 7 yeatse8&P Emerging Market and Morgan Stanley
Developed Markets Indices (1996-2003).



for 77.5% of the variability of the developed maseand three factors are required to explain
more than 90%. In contrast, the first factor ondplains about 47% of the variability of emerging
market indices and seven factors are requiredpgtagxmore than 90%. Although the single-
factor model is not a satisfactory simplificationeither of the two cases, this model is even

further removed from reality in the case of emeggoonomies.

%ACCUMULATED
%VARIABILITY VARIABILITY
DEVELOPED EMERGING |DEVELOPED EMERGING

Factor 1 775 46.7 775 46.7
Factor 2 8.3 14.2 85.8 60.9
Factor 3 5.4 10.7 91.2 71.7
Factor 4 3.1 7.2 94.3 78.8
Factor 5 2.2 5.9 96.6 84.7
Factor 6 1.5 4.6 98.1 89.2
Factor 7 1.1 4.3 99.2 93.5
Factor 8 0.8 3.3 100.0 96.9
Factor 9 3.1 100.0

Table 2. PCA analysis of stock market indices

To complement the previous analysis, we estima&edrelation between the PCA factors for
developed and emerging economies. Table 3 showsthelation structure of the first three
principal components for each group (withahd G denoting the factors for developed countries

and emerging countries, respectively).

Correlations between factors
G Gy Gy

Fi 0.41 -0.05 0.70
Fa 0.32 0.44 0.45
Fa -003 -0.81 0.39

Table 3. Correlation between PCA factors

In summary, there are multiple factors that aftimteloped and emerging economies and,
moreover, these factors are not the same in betsc# is thus important to consider a multi-
factor model for dealing suitably with financialtities that have investments in both developed

and emerging economies.

Simple Two-Dimensional Diversification Example
Consider the case of a corporate portfolio comgjstif one sub-portfolio with exposures in a

developed economy, with stronger credit standing,asecond one in an emerging economy,



with weaker average credits. As an example, Talsleodvs the calculation of the economic
capital required by a portfolio with 94% of expassiin the developed economy (portfolio with
PD of 2.5%), and the remaining 6% in the emergingieawy (averag®D of 5.25%). We
assume an averafi&D of 50% . The total capital required (excluding esied loss) is 9.37%,
using the Basel Il model (single-factor). Undewa-factor model with a correlation of 60%, the
capital requirements fall to 9.01%. This is a reatucof about 4% of capital due to
diversification or, alternatively, a factor adjusmnt of 0.96 (i.e. 9.01% = 9.37% x 0.96).

Portfolio 1 Portfolic 2 Total

Average prob. of default 2.8% 0.26% 2.7%

Percentage of exposure 84 % B% 100%

Loss given default a0% a0% a0%
Average correlation 15% 13%

Expected loss o.0t114a 0.0a1& 1.34%
Capital (without EL) 0.0871 0.0066 §.37%

Tuotal 0.0881 0.0081 10.71%

One factor Two factor Reduction

Total Entity model model factor
Expected loss 1.34% 1.34%

Capital {fwithout EL) H37% H01% H6%
Total 10.71% 10.35%

Table 4. Example: two-factor credit portfolio

3. A Model for the Diversification Factor
We first introduce the underlying credit model. Wen define the concepts of the diversification
factor and the capital diversification index, andlioe the estimation method. Finally we discuss

capital allocation and risk contributions withiretmodel.

Underlying Credit Model and Stand-Alone Capital
Consider a single-step model wihsectors (each of these sectors can represent etrckssss or

geography, etc.). For each obligan a given sectdk, the credit losses at the end of the horizon



(say, one year) are driven by a single-factor Mertmdel’. Obligorj defaults when a

continuous random variabléj , Which describes its creditworthiness, falls belbgiven

threshold at the given horizon. If we denotel, the obligor’s (unconditional) default

probability and assume that the creditworthinessaadard normal, we can express the default

threshold byN *(PD, ).

The creditworthiness of obliggiis driven by a single systemic factor:
Y, =0 L 1o € 3)

where Z, is a standard Normal variable representing thtesyis factor for sectds, and thee,

are independent standard Normal variables repiiagaie idiosyncratic movement of an
obligor’s creditworthiness. While in the Basel lbdel all sectors are driven by the same

systemic factoZ, here each sector can be driven by a different facto

We assume further that the systemic factors areleded through a single macro-factor,

Z,=JBZ+1-8n, , k=1..K (4)

where/), are independent standard Normals. For simplic#yhave assumed a single correlation

parameter for all the factors (as we seek a sip@tametric solution). Later, we allow for this

paramete) to be more generally an average factor correldtio all the sectors.

For ease of notation, assume that for obljguas a single loan with loss given default and

exposure at default given iysD; , EAD; respectively. As shown in Gordy (2003), for

asymptotically fine-grained sector portfolios, #iand-aloner -percentile portfolio loss for a

7 For consistency with Basel Il, we focus on a orgeal Merton model for default losses. The
methodology and results are quite general and earséd with other credit models, and can also

incorporate losses due to credit migration, in toldito default.



given sectok, VaR (@), is given by the sum of the individual obligordes in that sector, when

an a -percentile move occurs in the systemic sectdofaz, :

VaR(a)= > LGD, [EAD, EN[ N*(PD,)- ‘/_ZJ

j OSectork \/1 - ,0k

where z” denotes ther -percentile of a standard normal variable.

Consistent with common risk practices and withBlasel Il capital rule, we define tlséand-

alone capitaffor each sectorC, (a), to cover only theinexpected losse§hus,

Eg(a)=VaR(a)— EL, , whereEL, = ZLGDJ [(EAD; [PD, are the expected sector

j O Sectork

losse<® The capital for sectde can then be written as

EC(a)= > LGD, EEADJ[%N[ N*(PD)- */_ZJ ] 5)

j O Sectork \/1 ,0k

Under Basel Il, or equivalently assuming perfecteation between all the sectors, the overall

capital is simply the sum of the stand-alone cafitaall individual sectors
K
EC' =) EC, (6)
k=1
(for simplicity, we omit the parameter hereafter).
The Diversification Factor and Capital Diversification Index

In equation (1), we define thbversification factor, DFas the ratio of the capital computed

using the multi-factor model and the stand-alorgtah(now defined in equation 6),

DF =EC™/ ECY, DF <1.

8 The following discussion still holds if capitaldefined by VaR, by simply adding back tk at the end

of the analysis.
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As given in equation (2), for a given quantile, se=k to approximateF, by a scalar function of
a small number of intuitive parameters (say twthoee). This allows us to express the
(diversified) economic capital as a function of thdditive” bottom-up capital from the one-

factor model (equation 6), and a “factor adjustrhémhich can be tabulated)

EC™ = DF([ix i EC,
k=1

Let us now first motivate the parameters usedHisr approximation. We can think of
diversification basically being a result of to taources. The first one is the correlation between
the sectors. Hence, a natural choice for a pararinedeir model is the correlatigfiof the
systemic sector facto#. The second source is the relative size of vaseasor portfolios.
Clearly, one dominating very large sector leadsighh concentration risk and limited
diversification. So we seek a parameter represgeisentially an “effective number of sectors”
accounting for their sizes. Ideally, this shoulsibahccount for the differences in credit
characteristics as they affect capital. Thus, tos&dgth a very large exposure on highly rated

obligors, might not necessarily represent a laaggribution from a capital perspective.

Define thecapital diversification index, CDhs the sum of squares of #tapital weightsn each

sector
> EC’

withw, = EC,_/ EC® the contribution to one-factor capital of sedtofheCDI is simply the

well-known Herfindahl concentration index appliedhe stand-alone capital of each sector
(rather than to the exposures, as is more commadg). Intuitively, it gives an indication of the
portfolio diversification across sectors (not aaating for the correlation between them). For
example, in the two-factor case, tBBI ranges between 0.5 (maximum diversification) angl o
(maximum concentration). The inverse of Bl can be interpreted as an “effective number of
sectors” in the portfolio, from a capital perspeetiNote that one can similarly define the
Herfindahl index for sector or counterparty expesueADs) which results in a measure of

concentration in terms of the size of the portf¢diaod not necessarily the capital).

11



It is easy to understand the motivation for intrcidg theCDI. For a set of uncorrelated sectors,

the standard deviation of the overall portfolioslalistribution is given by, =~/CDI zkak :
with g, g, the volatilities of credit losses for the porteolind sectok, respectively. More

generally, for correlated sectors, denotefthe single correlation parameter of credit losses

(and not the asset correlations). Then, the vitladf portfolio credit losses is given by

o, =ll-B)cDI + B ¥ 0, ®)

If credit losses were normally distributed, a samigquation to (8) would apply for the credit

capital at a given confidence leveEC™ = DFN(CDI, 8) LEC', with

DF" = \/(1— E)CDI + E , the diversification factor for a Normal loss disttion. Figure 1

shows a plot ofDF N as a function of th€DI for different levels of the sector loss correlatio

[ . For example, for €DI of 0.2 and a correlation of 25%, the diversifiegital from a multi-

factor model is about 60% of the one-factor capitahe distribution is close to Normal).

Although credit loss distributions are not Normigeems natural to attempt a two-factor

parameterization for equation (1) such as

EC™(cDI,B )= DF (cDI,g) EC* 9)

9 One can explicitly obtain the relationship betwasset and loss correlations. For the simplestafase
large homogeneous portfolios of unit exposuresaudeprobability,PD, with a single intra-sector asset

correlationo and correlation of sector systemic factgfs the systemic credit loss correlation is given by

B =[N, (N(PD),N(PD), 08) - PD? /[N, (N *(PD),N(PD), p) - PD?]

with N, (a,b, p) the standard bivariate normal distribution ofd@am variables andb and correlatiom.

Note also that the variance of portfolio lossegiven by the well-known formula
02 =Y LGD,EADLGD,EAD,|N,(N*(PD,),N}(PD,), p, )~ N"*(PD,)N*(PD,)]
ij

where 0 = P for obligors in the same sector ayg&d: ,g\/;k\/ﬁ for obligors in different sectors.

12



with the sector systemic factor correlation subgtig the loss correlation, given it's availability
a priori, from the underlying model. In the rest of th@@a we refer to the model given by
equations (3), (4), (5), (6) and (9) as Bie credit capital model

12

1 -
/// Correlation

0.8 0%
—10%
0.6 25%
50%
047 — 75%

Diversification Factor

0.2

CDI

Figure 1. Idealized diversification factor for Normal distributions

Clearly, we do not expect the parameterizationd®e exact, nor for thBF to follow

necessarily the same functional formBE " . However, as explained earlier, we can expect the
two parameters to capture broadly the key sounragiversification: homogeneity of sector sizes
and cross-sector correlation. So it remains an@écapguestion to see whether these two
parameters are enough to create a reasonable apatiax of the diversification factor. Note

also that, for regulatory use, we might seek tovee aconservativaliversification factoDF,

so finding a reasonable upper bound might be mopeoariate for this type of application.

Estimating the Diversification Factor, DF

We propose to estimate tbd- function numerically using Monte Carlo simulatioirs general,
this exercise requires the use of a multi-facteditrportfolio application (which might itself use
a simulation technique). The parameterization okthforDF can then be tabulated and used
generally both as a basis for minimum capital nesganents and for quick approximations of

economic capital in a multi-factor setting, with@atourse to further simulation.

The general parameterization methodology is aeval We assume in each simulation, a set of

homogeneous portfolios representing each sectoh Eector is assumed to contain an infinite

13



number of obligors with the sanD andEAD. Without loss of generality, we deGD = 100%,
and the total portfolio exposure equal to OBEEAD, =1.

The numerical experiments are performed as follows:
» Assume a fixed average cross-sector correlgfiand number of sectoks We run a large
number of capital calculations, varying indepenlyeinteach experime#t

* the sizes of each sector

« PD ,EAD,p , k=1..K
* Ineach run, we comput&C, (k =1,...,K), ECS" andCDI from the simple one-factor

analytical formula and also the “trudC™ from a full multi-factor modét

« We plot the ratio of EC™ / EC™) vs. theCDI.

» To get the overalDF function for a level of correlatiof we then repeat the exercise
varying the number of sectois

* We then repeat the exercise for various leveloaktation

» Finally, we estimate the functiddF (CDI, ) by fitting a parametric function to the points

As an example, Figure 2 presents the plokfe? to 5 and3=25% and random independent
draws withPD, [.029%,20%], p, [1[2%,20%]. The dots represent the various experiments,

each with different parameters. The colours oftbiats represent the different number of
sectors. Simply for reference, for ed€hwe also plot the convex polygons enveloping thatso
Figure 2 shows that the approximation is not perfatherwise all the points would lie on a line
(not necessarily straight). However, all the podudie within a well bounded area, suggesting it
as a reasonable approach. A funcfifacan be reliably parameterized either as a fit éopthints
or, more conservatively, as their envelope. Formgda, for aCDI of 0.5, a diversification factor

of 80% results in a conservative estimate of thetabreduction incurred by diversification.

10 practice, one must use reasonable rangesdqratameters as required by the portfolio. For Base
adjustments, we do not have to sample independéigsset correlation, , since these are either

constant or prescribed functionsRiD, for each asset class. As shown later, this iesulighter estimates.

1Iexcept for the two-factor case, where numericagrdtion can be used, multi-factor capital is dalea

using a MC simulation, although some analytics mighpossible as explained earlier.

14



This exercise is only meant to illustrate the pastamization methodology. We have shown that
even in the case where sed®ids, exposures and intra-sector correlations aredari
independently, two factor€QlI, ) provide a reasonable explanation of the diverdificafactor.
One can get tighter approximations by adding exaitany variables or by constraining the set
over which the approximation is valid. In practif@r, examplePDsand intra-sector correlations
do not vary independently and they might only cavemaller range. In Section 4, we provide a

more rigorous parameterization and examples icdmext of the Basel Il formulae.

0.2 03 0.4 05 08 [ 08 03 1

CDI

Figure 2. Empirical DF as a function of theCDI (K=2 to 5, andf=25%)

Capital Allocation and Risk Contributions

Under a one-factor credit model, capital allocafimatraightforward. The capital attributed to a
given sector is the same as its stand-alone cagtd) , since the model does not allow further

diversification. Under the full multi-factor modehe total capital is not necessarily the sum of
the stand-alone capitals in each sector. Cledrtystandalone risk of each component does not
represent a valid contribution for sub-additivé riseasures in general, since it fails to refleet th
beneficial effects of diversification. Rather,striecessary to compute contributions on a marginal
basis. The theory behind marginal risk contribigtiand additive capital allocation is well
developed and the reader is referred elsewheiitsforore formal derivation and justification

(e.g. Gouriéroux et al 2000, Hallerbach 2003, Kard Tasche, 2003, Kalkbrener et al 2004).

Using the factor adjustment approximation (9), onight be tempted simply to allocate back the

diversification effect evenly across sectors, s the total capital contributed by a given sector

is DF [EC, . We refer to these as theadjusted capital contribution3 his would not account,

15



however, for the fact that each sector contribditfsrently to the overall portfolio

diversification. Instead, we seek a capital decasitjpm of the form

HW:iDﬁEq (10)

k=1

We refer to the factor®F, in equation (10) as thearginal sector diversification factors.

If DF only depends o@Dl andfg (where the correlation can also represent an geera

correlation for all sectors, as shown below), thisn a homogeneous functiohdegree zero in
the EC, ’s (indeed it is homogeneous in the size of eaclosexposures as well). This is a
direct consequence of both @881 and the averag8 (as defined later) being homogenous of

degree zero. Thus, the multi-factor capital form@lgis a homogeneous function of degree one.

Applying Euler's theorem, leads to the additive giaal capital decomposition (10) with

_ OEC™
9EC,

DF, . k=1...K (11)

Under the simplest assumption that all sectors tfavsame correlation paramefeme can

show that

DF, = DF +2DF' EC:f -CDI (12)
EC

where DF'=0DF /dCDI is the slope of the factor adjustment for the gigerrelation levep.

Expression (11) shows that the marginal sectorrslifieation factor is a combination of the

overall portfolioDF plus an adjustment due to thielative size” of the sector to the overall

portfolio. Intuitively, forDF >0 and all sectors having the same correlgfiamsector with small

stand-alone capital§C, / EC® < CDI) contributes, on the margin, less to the ovenaitfplio

capital; thus, it gets a higher diversification &nDF, .

12Tasche (2006) formally generalizes the diversificafactor and the marginal diversification fastor
introduced here for a general risk measure (e.gefiees the marginal diversification factor ofiaem

position, with respect to a given risk measurghagatio of its risk contribution and its standrad risk).

16



In the more general case, each sector has a diffeoerelation level5 . We define in general the

average factor correlation as follows.

Assume a general sector factor correlation mafigthis can be more general than that resulting
from equation 2, wher®, =/, , j #1), and a vector of portfolio weight&/ = (Wl...WS)T.

We define the average sector factor correlation as

[_?zzi:;qiwiwj =0.2_52
D> ww,  FP-5°

i

whereg? =W'QW is the variance of the random variable given eieighted sum of the

factors, 9% = ZWZ and 9% = (Ziwi)z. B is an average correlation in the sense that

WTBW=W'QW = ¢?, with B the correlation matrix all the non-diagonal entries equg(_}’td:or
our specific case, we chose the portfolio weights to be the shamel @pital for each sector.

Therefore, 5% = EC? and 9 = (ZiECI )2 = (ECS'f )2.

Then, the marginal sector diversification factor is given by

_ aDF [ EC, _ aDF 1-(EC,/ECY) 1~ -
DF, =DF +2-——- 0= 5 CDI}+2 35 d DI 1o, - B] (13)

where

ZQki ECJ'
~ jZk
Q :J;t—
“TYEC
JES
is the average correlation of sector fadtéo the rest of the systemic sector factors in the
portfolio. Thus, sectors with lower than average correlatidhdaest of the systemic sector

factors in the portfolio get a higher diversification benefitone would expect.

17



The marginal capital allocation resulting from thedel leads to an intuitive decomposition of
diversification effects (or concentration risk)arihree components: overall portfolio

diversification, sector size and sector correlatibn

DF, = DF +ADFg, +ADF

Corr

(14)

Size

4. Parameterization Exercises

Section 3 presented a simple example to illustfegparameterization methodology for a general
problem where sect®®Ds exposures and intra-sector correlations wheredamdependently.
Even in this case, two paramete®f)(, £ provided a reasonable explanation of the
diversification factor. One can get a tighter apprmtion, by either searching for more
explanatory variables, or by constraining the ser avhich the approximation is valid. In
practice,PDsand intra-sector correlations do not vary indegetlgt and they might only vary

over smaller ranges. For example, under the Basabital rules, the asset correlation is either
constant on a given asset class (e.g. revolviradl etposures, at 4%) or varies as a function of
PDs (e.g. wholesale exposuréé$)See also Lopez (2004), which shows that averaggt as

correlation is a decreasing functionRID and an increasing function of asset size.

In this section, we present more rigorous paranzettons and error analysis for the case of
wholesale exposures (corporates, banks and somgirithe context of Basel Il. We first
describe in detail the case of a two-factor paranzzttion and a given cross-sector correlaffon
and then extend the results further to multiplediecand correlation levels. Our objective in this
section is not to provide a complete parameterizethce, but rather to develop a good
understanding of the basic characteristics of therdification factor surface, the approximation

errors and the robustness of the results.

13When one defines the average correlation as tmeetic averageg = Z(Eck |EC*) B, , the

resulting formula for the marginal sector diversafion factor is simpler and given by

dDF [ EC, oDF -
DF, =DF +2——— -CDI |+2=-0p -
“ acDI | ECc® } R)e Eﬁ'gk F ]

Although simpler, this definition has some undds&aroperties which result in inconsistencies.

141n this case, the asset correlation is given by

_ -50PD _ 4-50PD
p= 0.12[11 S j+ 0.24[1—1 € j
—-€e

1- efSO
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Two-Dimensional Parameterization for Wholesale Expsures

Consider a portfolio of wholesale exposures in hwmogeneous sectors, each driven by a single
factor model. We assume a cross-sector correl@oi®0%. For simplicity, assume all loans in
the portfolio have a maturity of one year. To eatinthe diversification factor functiobF

(CDI, p=60%), we perform a Monte Carlo simulation of threeusand portfolios. ThEBDsfor

each sector portfolio are sampled randomly andaaddently, from a uniform distribution in the
range [0,10%]. We further assume that in each seasset correlations are given as a function of
PDs from the Basel Il formula for wholesale exposw@hout the firm-size adjustment. The
percent exposure in each sector is sampled randasnlyell, and without loss of generality we
assume 100%GDs.For each of the 3,000 portfolios, the economidtehfs calculated using a
MC simulation with one million scenarios on thetsedactors (assuming=60%), and assuming
these are granular portfolios (hence computingtmelitional expected portfolio losses under
each scenario). Economic capital is estimateti@99.9% percentile of the credit losses net of

the expected losses.

Figure 3 compares the capital obtained for the kitad portfolios using a one-factor model and
a two-factor model, as a function of the averadawteprobability (to make the number more
realistic, we plot the capital assuming 5Q@Ds). The two-factor model generally results in
capital requirements that are lower than thosb@stngle-factor model, as the circles (in blue),
which correspond to the single-factor model, areegally above the squares (in red), which

correspond to the two-factor model.

16% 1

Two factor model vs.
14% - one factor model

12% -
One factor model
10% A

8% - Two factor model

Regulatory Capital

6%

4% -

2%

0%

0% 2% 4% 6% 8% 10%
Average PD

Figure 3. One-factor and two-factor capital as a faction of averagePDs (LGD=50%)
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Figure 4 plots the diversification fact®@F, as a function of th€DI for the simulated portfolios.
With two factors, th&€DI ranges between 0.5 (maximum diversification) arfehdximum
concentration). There is a clear relationship lkeetwthe diversification factor and t@6®lI, and a

simple linear model fits the data very well, with®f of 0.96. Thus, we can express the

diversification factor d$
DF(CDI, £ =06) =0.6798+0.3228 CDI

100%

90% -

80% TV
70%

60% -

y =0,3228x + 0,6798

50% "
R?=0,9625

40% -

Diversification Factor

30% -

20%

10% +

0% T T T T T T T T T
50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%
Capital Diversification Index (CDI)

Figure 4. Two-factor diversification factor as a function of the CDI (8=60%)

Figure 5 displays, for all simulated portfoliose thctual economic capital from the two-factor
model against that estimated from fE model resulting from the regression in Figure HefE
is clearly a close fit between the two models, it standard error of the estimated
diversification factor model of only 10 basis pairfEinally, Table 5 summarizes the resulting
diversification factor in table format. Accountifiy maximum diversification, the capital

savings are 16% .

15 Similarly, one can obtain the parametric envelbfhe data, to get a more conservative adjustment.
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18%

16% +

14% +

12% 4

10% +

8% 1

6%

Estimated Capital (DF Model)

4% -
Ow

2% A &
°

o

0% T T T T T T T T

0% 2% 4% 6% 8% 10% 12% 14% 16% 18%
Actual Capital (Two-factor model)

Figure 5. Capital from DF model vs. actual two-factor capital =60%)

cDI Diversification
Factor
50% 84%
55% 86%
60% 87%
65% 89%
70% 91%
75% 92%
80% 94%
85% 95%
90% 97%
95% 99%
100% 100%
Intercept 0.6798
slope 0.3228
R/2 0.97

Table 5. Tabulated diversification factor (two-facbrs) (8= 60%)

To understand the application of this resulting eidd capital allocation, consider a portfolio
with 70% of the one-factor capital in sub-portfali@nd 30% in sub-portfolio 2. Table 6 presents
a summary of the capital contributions. Tl = 0.58, which leads tbF = 86.3% . As defined
earlier, the unadjusted capital contributions appé/same diversification factor of 86.3% to each
sub-portfolio, thus retaining the same proportibaltocation as the SA contributions. However,
consistent with a marginal risk allocation, the Bemgortfolio contributes more to the overall
diversification and gets an adjustment factor &fe6While the larger portfolio gets a 94% factor.
The marginal capital contributions of the portfeliare 66.1 (76.6%) and 20.2 (23.4%),

respectively (summing to 86.3).
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Capital SA(_:api_tal Unadjl_Jsted Ma_lrgir]al_ Se_ctor
One-Factor Contributions Capital Diverisfication
% Contributions Factor

P1 70.0 70.0%) 60.4] 0.94]

p2 30.0 30.0% 25.9 0.67
Total 100.0 100% 86.3
CDI 0.58
DF 86.3%0

Table 6. Capital contributions for a two-factor mocdel (8=60%)

Parameterization of the Surface

We now investigate the behaviour of the surfaca famction of the number of factors and also
for other cross-sector correlation levels. We nowsider portfolios of wholesale exposures
consisting ok homogeneous sectoks;2,3,...,10. The cross-sector correlatiorSis 60%.We
follow the same estimation procedure as beforestionate the diversification factor functioDf

(CDI, B=60%) for eachk, using Monte Carlo simulations of three thousaodfplios, each.

Figure 6 shows the detailed regression plot&far, 7, 10.Table 7 presents tHaF tabulated for
eachk. It also presents the coefficients of the regoessand, finally, an average over all the

range. In all cases from 2-10 factors linear mditethe data well withR? ranging from 96-98%,
and standard approximation errors of 10-11 bps.dkear that at this correlation level, a linear

model fits the data very well, from this examplke j@further shown in Figure 7, which plots the
nine regression lines.
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Figure 6. DF model regressions fok=4, 7, 10(8-60%)

DF

Diversification factor (beta=60%) Factors
100.0% —2
95.0% - —3
90.0% 4
85.0% 1 5
80.0% 1 —
—7
75.0% - s
70.0% - 9
65.0% 7 10
60.0% ‘ ‘ ‘ ‘
0% 20% 40% 60% 80% 100%
CDI

Figure 7.DF model regression lines fok=2,

..., 10(8=60%)
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CDI \ Factors 2 | 3 |1 4 1 5 | 6 | 7 1 8 | 9 10 Average
10% 70.7% 70.7%
15% 72.3% 71.9% 72.2%|  72.4% 72.2%
20% 74.0% | 74.0%| 74.0% 73.6% 73.9%  74.0% 73.99
25% 75.0% | 75.7%| 75.79 75.7% 75.3% 75.606  75.7p6 75.546
30% 76.8% | 77.4%| 77.49 77.4% 77.0% 7730 77.4p% 77.2%6
350% 79.1%| 785%| 79.194 79.1%  79.09 78.7%) 79.4%  79.9% 78.9p6
40% 80.7%| 80.2%| 80.8%4 80.8%  80.79 80.4%) 80.1%  80.4% 80.6p6
45% 82.4%| 81.9%| 8254 825%  82.49 82.1%) 82.4%  824% 82.3p6
50% 84.1%| 84.1%| 83.74 842% 842§ 84.1% 83.89 841% 84f% 0YB4.
5506 85.7%| 85.8%] 8549 859% 858f% 85.8% 85.59 85p5%  85B%  79®5.
60% 87.3%| 87.4%| 87194 87.6% 875% 87.5% 87.29 87b%  87p% 49B7.
65% 89.0%| 89.1%] 8884 89.3% 892§ 89.2% 88.99 89pP%  891% 19®9.
70% 90.6%| 90.8%] 906944 91.00 909 90.8% 90.69 90p%  90B%  89®0.
75% 92.2%| 925%| 9234 92.7% 926f% 92.5% 92.49 92b%  92pb% 5%02.
80% 93.8%| 94.1%| 94.004 94.4% 943f% 94.2% 94.19 94B%  94p%  19@4.
85% 95.4%| 95.8%] 95794 96.1% 959f% 95.9% 95.89 96p%  95p%  8Y@5.
90% 97.0%| 975%| 9754 97.8% 97.6% 97.6% 97.59 97f%  97p% 5%07.
95% 98.6%| 99.1%] 99294 995% 993} 99.3% 99.29 99h%  99p% 29@9.
100% 100.094 100.09% 100.04%6 100.0p6 100.%  100.9% 100.006  %0$.0100.0% 100.0%

Intercept 0.6798] 0.673] 0.664] 0.672] 0673] 0.672€ 0.667] 0670 0.673] 0671
slope 0.3228] 0.3349 0.344p 03397 0.33p9 0.3368 0.3413 0.3406 03359 370.3
RA2 96.3% | 96.99 97.2% 97.60 98.0pb 97.9% 97.p% _ 98|0% od.1%

Table 7. Tabulated results for theDF model for k=2,...10(8=60%)

Figure 8 plots the linear regressions from the sexegcise for a correlation @#=40%, for

k=2,...,10 TheR? are in the order 97 to 98% and the standard eraoge between 12-15 bps.

DF

100.0%

Diversification Factor (beta=40%)

95.0% -
90.0% -
85.0% -
80.0% -
75.0%
70.0% -
65.0% -
60.0% -
55.0%

Factors

50.0%
0%

20%

40%

60%
CDI

80%

100%

Figure 8.DF regression lines fork=2, ..., 10(3=40%)

24



A linear regression still performs quite well ittifig the actual economic capital for the MC

generated portfolios, but is not as accurate #ssiprevious casgt60%). The effect of

curvature is illustrated in Figure 9, which showseaar and a quadratic fit through the data for

the case when the portfolio contains 10 sectors.

Diversification Factor
E

y=0,5057x +0,5186
R?=0,9822

40%

50%

60%

70%

80% 90% 100%

Capital Diversification Index (CDI)

Diversification Factor

100%

90%

80%

y =-0,169x* + 0,6985x + 0,4711

WD R?=09872

60% 1 , o
50%
20%
30%
20%

10%

0%

10% 20% 30% 40% 50% 60% 70% 80%

Capital Diversification Index (CDI)

Figure 9.DF model linear and quadratic fit for k=10 (£=40%)

90% 100%

The quadratic fit clearly fits the data better, amgdarticular at both ends of the range, where the

linear fit is clearly off (e.g. resulting in a highthan 100% diversification factor, which would

need to be capped). Figure 10 plots the averagarliand quadratic fits and provides the

functions in tabular form for comparison. There diféerences in the estimat&d- of up to 3%.

In practice, the quadratic fit provides added valiles quadratic model is given by

CDlI Linear Quadratic

10% 56.9% 53.9% 100.0%

15% 59.1% 57.0%

20% 61.5% 59.9% 95.0%

25% 63.9% 62.8% 90.0% -

30% 66.5% 65.9% 85.0% -

35% 69.1% 68.8%

40% 71.6% 71.8% " 80.0% 1 — Linear

45% 74.2% 74.6% a 75.0% )
—— Quadratic

50% 76.7% 77.1% 70.0% -

55% 79.2% 79.9%

60% 81.8% 82.5% 65.0% 1

65% 84.3% 85.0% 60.0% -

70% 86.9% 87.5% 55.0% -

75% 89.5% 89.8%

80% 92.0% 92.1% 50.0% ‘ ‘ ‘ ‘

85% 94.6% 94.2% 0% 20% 40% 60% 80%  100%

90% 97.1% 96.2% cDi

95% 99.7% 98.2%

100% 100.0% 100.0%

Figure 10.DF model linear and quadratic functions (3=40%)
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The non-linear nature of tHeF tends to increase with decreasing correlation l€9eE can get

some intuition to this by revisiting the functioriatm for portfolio loss standard deviation as

given by equation (8) and Figure 1. To illustrdtis effect further, Figures 10 and 11 present he

results for two uncorrelated facto8=0%).16

Diversification Factor
@
=
£

¥ =0,7921x +0,2435

R2=

0,9769

50%  55%  60%

65%  70%  75%

80% 85%

Capital Diversification Index (CDI)

90% 95%

100%

Diversification Factor

y =-0,8898x + 2,0767x - 0,1975
R®=0,9971

50% 55% 60% 65% 70% 75% 80% 85% 90%
Capital Diversification Index (CDI)

Figure 11.DF model linear and quadratic fit for k=2 (£=0%)

95%  100%

DF

CDI Linear Quadratic

50% 64.0% 61.8%
55% 67.9% 67.6%
60% 71.9% 72.8%
65% 75.8% 77.6%
70% 79.8% 82.0%
75% 83.8% 86.0%
80% 87.7% 89.4%
85% 9L7% 92.5%
0% 95.6% 95.1%
5% 99.6% 97.2%
100% 100.0% 100.0%

100.0%

95.0% -
90.0% -
85.0% -
80.0% -
75.0% -
70.0% -
65.0% -

60.0%

—— Linear
—— Quadratic

40% 50% 60% 70% 80% 90% 100%

CDI

Figure 12.DF model linear and quadratic functions (3=0%)

Finally, to get an overall picture of tid surface, Figure 13 plots the function for the three

levels of correlation, as computed in this sectiote the similarity of with Figure 1.

161n Figure 12, th®F is capped at 100% and also the quadratic funiiadjusted at the end to get
preciselyDF=100% for a 100% CDI.
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80.0%
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70.0%

DF
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50.0%
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CDI

Figure 13.DF model linear and quadratic functions (3=0%)

5. The Diversification Factor as a management tool

In addition to its potential regulatory applicationve now focus on the application of DE
model as a risk management tool to

» understand concentration risk and capital allocatio

» identify capital sensitivities to sector size andrelations

e compute “real-time” marginal risk contributions foew deals or portfolios

In this section, we first summarize the parameatéthe model and the sensitivities derived from
it, and discuss their interpretation as risk antcemtration indicators. We then explain how the
model can be used in conjunction with a full méaiitor internal credit capital model, by

computing its implied parameters. We illustrats #ygpplication with a simple example.

Summary of Model Parameters as Risk and Concentrain Indicators

The intuitiveness of thBF model allows us to view its parameters as usefiland
concentration summary indicators. We divide these, sector-specific indicators, portfolio
capital indicators, capital contributions and colagions, and sensitivitie§:or completeness, we

summarize these in Table 8.
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Sector specific indicators

(for sectors kzl,...,K)'L7

Portfolio capital indicators

Marginal capital contbutions

(for sectors k=1,...,K)

Inputs
Or Intra-sector (asset) Ecs' | Capital one-factor B Sector factor correlation
correlation (undiversified) weights
PDy average default CDI Capital C_?k Average correlation of a
probability diversification index sector factor to the other
sectors
m Average exposure, [; Average cross sector|
LGD. loss given default correlation
Outputs
EC, Stand-alone capita| DF Diversification factor DF, Sector diversification factor
DF, = DF + ADF.* + ADF,"
EC™ | Economic capital ADF 5% Sector size diversification
(diversified) component
ODF | Sensitivity ofDF to ADF " | Sector's correlation
o changes in average diversification component
cross-correlation
oDF Sensitivity ofDF to
aCDI changes ittD

Table 8. Summary parameters and risk indicators oDF model

We obtain the sensitivities of the diversificatiaector to theCDI and the average cross-sector

correlation directly as slopes from the estimdddsurface. By using the chain rule, it is

straightforward to get the sensitivities of thetéado the sector SA capiteECy) or to its

correlation parameters{jk , B,). In addition, the following sensitivities are @isefor

management purposes:

. OEC™ 9EC, =DF,, (k=1...,K) — change in economic capital per unit of standalo

capital fork-th sector (it can also be normalized on a perexpiosure basis)

17 Commonly, the (exposure-weighted) aver&gd andLGD for each sector are computed, and the

averagePD isimplied from the actual calculation of expectessles.
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. OEC™ 55 =df° [EC® — change in economic capital per one unit of ayeorrelation (with

df¢ =aDF/ag , as above, the slope of tB& surface in the direction of the average

correlation)

T 5 )0 = U ey ) {2 ) v

— change in economic capital per one unit of seetctor correlation fok-th sector

Implied Parameters for an Internal Multi-Factor Economic Capital Model

TheDF model can be fitted effectively to a full multi-tac economic capital model by

calculating its implied parameters. The fitted modéth its implied parameters, then can be used
to understand the underlying problem better, fenwmnication purposes, or as a simpler and
much faster model for real-time calculation or agptilation. In this sense, this is akin to using the
implied volatility surface from option prices withe Black-Scholes model, or the implied

correlation skew in CDOs in the context of a coputadel.

Assume, for ease of exposition, that we have divitie portfolio intdk homogeneousectors
(not necessarily granular), each with a sirfgfiy EADandLGD (in practice this latter
assumption can be relaxéd)The inverse problem solves 2K implied correlation parameters

(o, By), thus requiring as many statistics from the imdmodel. A straightforward algorithm

to fit the model is as follows:

« Compute for each sector portfokel,...,K, its stand-alone capital from the internal multi-
factor economic capital model

» Solve for the implied intra-sector correlatiop, , from equation (5). If the portfolio is fully

granular (or we are simply interested in systerajgital), this provides an indication of the

average correlation (even for non- homogeneoudqgtiod). For non-granular portfolios, this

18 Sector homogeneity is not a requirement. Noteahastion (4) does not require singBs, EADsand

LGDsfor each sector.
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implied correlation adjusts the model granularifeets; the less granular the portfolio, the

higher the implied correlatioff.

« Compute the total stand-alone capiEG® , andCDI from theK stand-alone capitalEC,
for each sector.

« Compute the overall economic capital for the pdigfd&EC™, from the internal multi-factor
capital model.

e Solve for the average correlatioﬁ,, implied from the equation (9)

EC™(cDI, 3 )=DF (cDI, B)EC™
assuming that thBF surface is available in parametric (or non-paraiajeiorm

» Computes th& marginal capital contributions to each sed®, (EC,, from the internal
economic capital model.
e Solve for the implied inter-sector correlation pamersék and S, from the marginal

capital contributions.

We can see from this algorithm, that thE model basically provides a map from the correlation
parameters to various capital measures:

* intra-sector correlationé--> stand-alone capital

« overall capital (or the diversification facto§—> average cross-sector correlation

* marginal capital contribution§-—> relative sector size and relative cross-sector

correlation

Example: Model with Implied Parameters

We now present a stylized example to illustrate¢heoncepts. Consider the credit portfolio with
four sectors given in Table 9. The first two sestoave @D of 1% and exposure of 25; the other
two sectors are lowd?D (0.5%). For simplicity we assume a 100%D. The third and fourth
column give the expected loss&d ) expressed in monetary terms and as percentaifibt The

following two columns give the computed stand-al(®&) capital computed form the internal

19 This is consistent with Vasicek (2002), wheres ishown that under the one-factor Merton model, one
can approximate the losses of non-granular paodddly applying the Vasicek formula using ¢ (Z-p)9)
in place of the actual correlatign whered is the Herfindahl index on the sector exposures.cah also

use this approximation further to get the implisdet correlatiop for the sector.
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multi-factor model (total and percent). The ladtiomn shows the implied intra-sector

correlations, obtained by inverting the stand-alcagital formula (5).

. SA Capital | SA Capital %[
Portfolio | EAD | PD EL | EL% (One_c}:"’;p L (One_"’}‘:';ctor) Implied Rho
P1 25| 10% | 025 | 33.3% 34 35.3% 20.1%
P2 25| 10% | 025 | 333% 21 215% 12.4%
P3 40 | _05% | 020 | 26.7% 38 39.6% 21.9%
P4 10 | 05% | 005 | 6.7% 04 3.7% 8.6%

Total__| 100 0.75_| 100.0% 9.7 100.0%

| CDI 32.9% |

Table 9. Four-sector portfolio: characteristics andstand-alone capital

The portfolio total exposure is 100, tBk is 75bps and the stand-lone capital is 9.7%.0Deis
close to one third, implying that there are roughhge effective sectors. We can start
understanding the effect of various credit paramsdig comparing the contributions to total
exposureEL and SA capital. The differences in exposure Bhaontributions can be explained
by the interaction of the exposures with BigsandLGDs. The intra-sector correlations explain
the differences betwedfl and capital contributions. For example, the fogehbtor represents
one tenth of the exposures, almost 7% bfbut less than 4% of the capital. This indicaket it

is first a lowPD sector and also that it has a lower than averagdd intra-sector correlation.
Consider, in contrast, the third sector portfolidnich constitutes 40% of the total exposure, 27%
of EL and about 40% again of SA capital. This sectavsPD reduces it&€L contribution, but

its higher implied asset correlation (22%) increadteshare of SA capital. The first sector’s high

capital contribution is explained by both hig® and intra-sector correlation.

Table 10 summarizes the results for overall econaapital and implied sector factor
correlations. First, the multi-factor economic ¢apinodel is used to compute the overall
economic capital, which is then used to calculagdi- and average sector factor implied
correlation. The economic capital is 7.3% of thaltexposure, implying a diversification factor
DF = 75.5% (7.3 = 0.75% 9.7). We use the tables from the previous sedttiastimate the

average correlatiorj_? ; a correlation of 40% give3F=68% and a correlation of 60% gives

DF=78.2%. Using linear interpolation, we find the impliedeage correlation to b = 54.9%.
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. SA Capital . Capital % Economic Capital . ,
Portfolio | Exposures (One-Factor) Implied Rho| (Flat Beta=54.6%) % Implied Qk's
P1 25 35.3% 20.1% 36.1% 31.9% 45.7%

P2 25 21.5% 12.4% 19.0% 17.2% 49.7%
P3 40 39.6% 21.9% 42.3% 47.5% 65.6%
P4 10 3.7% 8.6% 2.6% 3.4% 66.8%
Total 100
SA Capital col DF Capital Implied
P P Average Beta
9.7 32.9% 75.5% 7.3 54.9%

Table 10. Multi-factor capital and implied correlations

The fifth column of Table 10 gives the capital adnitions assuming that all sector factor
correlations are equal to the average of 54.9%sé& bentributions are close but do not equal the
SA capital contributions. In this case, every sefdotor is equally correlated with the overall

portfolio, and the only difference stems from tiEesomponent of the sector diversification
factorADF . The decomposition of the sector diversificatiantér for the case of a flat

correlation is given on the left side of Table Cbmpared to the stand-alone case, the size
component of the sector diversification factor @ages contributions for the two biggest sectors
(P1 and P3) and decreases them for the two srredl @2 and P4). While the overall
diversification factor is 75.6%, the marginal seciversification factors range from 53% (P4) to

81% (P3).

Flat Sector Factor Correlation (Average) Implied Sector Factor Correlations
Portfolio DF, . Por.tf.olio. Sef:tor Secto!’ DF, . Por.tf.olio. Sef:tor Secto!’
Diversification Size Correlation Diversification Size Correlation
P1 77.5% 75.6% 1.8% 0% 68.4% 75.6% 1.8% -9.1%
P2 66.9% 75.6% -8.7% 0% 60.7% 75.6% -8.7% -6.2%
P3 80.8% 75.6% 5.2% 0% 90.6% 75.6% 5.2% 9.8%
P4 53.3% 75.6% -22.3% 0% 70.7% 75.6% -22.3% 17.4%

Table 11. Decomposition of marginal sector diversifation factors.

Next, the multi-factor economic capital model iediso compute the marginal capital
contributions, and implie(ﬁjk 's for each sector are then estimated (see théwastolumns of

Table 10). For the first two sectors, the capitaitdbutions are lower than those with equal

correlations. Hence, we obtain lower than averagwied correlations of the factors to the rest of
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the portfolio. The right half of Table 11 gives tihecomposition of the sector diversification
factors. Also, from the last column, we see thatfitst two sectors have negative sector
correlation diversification components. The opmoisttrue for P3 and P4 (higher than average

implied correlations and positive correlation comet in the sector diversification factor).

The fittedDF model can now be used to calculate, almost irstaatusly, sensitivities or the
capital contribution of new loans or trades, whillewing us also to explain the sources of risk
and diversification. For example, bringing in a newall exposure to sector 3, would result in a
marginal capital contribution of about 90bps pet ahexposure (this is the product a marginal
sector diversification of 90.6%, and a SA capitaittibution of 39.6% divided by 40, or about

1% . The benefit of diversification is smaller giviat the exposure is coming into a large,

highly correlated sector, as explained earliereNbat one can also use the model to compute the

capital contributions of bigger transactions.

6. Concluding Remarks

We present a simple adjustment to the single-factedit capital model, which recognizes the
diversification obtained from a multi-factor creditting. In contrast to full MC methods, there
are benefits for seeking analytical or semi-anedtiapproximations for both for regulatory
purposes as well as for credit portfolio decisicanagement support tools. As a risk management
tool, the model can be used to understand coneemtrask, capital allocation and sensitivities,

as well as to compute “real-time” marginal risk rdoutions for new deals or portfolios.

The model is based on the concept dhersification factorWe estimate this diversification
factor for a family of multi-factor models, and shthat it can be expressed as a function of two
parameters that broadly capture the size concemtrand the average cross-sector correlation.
The model further supports an intuitive capitabedition methodology. For this purpose we
definemarginal diversification factorat the obligor or sub-portfolio level, which acobfor

their diversification contributions to the portli

While, as presented, the estimation of the divieedibn factor requires substantial numerical
work, it can then be tabulated and used readily laasis for regulatory rules or economic capital
allocation. This results in a practical, simple dast, method that can be also applied for stress
testing and pre-deal analytics. For example, atfitutien can re-calibrate the model using an

advanced credit portfolio framework on a periodisib (for example monthly, weekly and even

33



daily) to adjust for changing market conditions gmdtfolio composition. The model can then be

used in real time during the day to support denisiaking, origination and trading.

We believe the diversification factor has potertidbe applied to extend the Basel Il regulatory
framework to a general multi-factor setting, thilswing for more accurate model of
diversification for portfolios across various asdasses, sectors and regions, and in particular
within mixed portfolios in developed and emergimgromies. However, a few remarks are
appropriate with respect to its calibration togethith the regulatory parameters from Basel II.
While we have used in Section 4 the Basel formfdag/holesale exposures in these exercises,
we do not wish to imply that, as presented, thibtion exercises are generally appropriate for
regulatory rules. An explicit assumption of theulesis that the underlying credit model is given
by equations (2) and (3). The calibration of Bdsphrameters was done generally in the context

of a one-factor model. Thus, one can argue thtigifample used for calibration already covers

the sectors in the portfolio, the asset correlatgnalready account, at least partially, for cross-

sector diversification (see also e.g. Lopez 200d)the degree that the original parameter
calibration accounts for cross sector diversifimatsome scaling (up) for intra-sector correlations

or (down) the diversification factor is required,arder to not incur in double counting.

Finally, there are several enhancements of the hatiéch can be addressed in future research.
These include:

» TheDF presented only covers systemic credit risk (as tlee8asel Il model) and,
hence, is most useful for large portfolios. Itsreat strength is on capturing sector and
geographical, but not name (or counterparty), cotraéons. A useful extension of the
model would also cover idiosyncratic risk (nameaanmtrations) by applying
mathematical tools such as the granularity adjustritezhnique.

e There is potential for improving and generalizihg parameterization of the model.
More parameters can be added or perhaps one aah $@aparameters that get better or
more general fits (for example, the correlationapaater used in this paper is only one of
several, which could have been chosen). Howeveiropinion, this should not be done
at the expense of too much complexity or loosiraitiuitive interpretation of its
parameters, results and capital allocation.

» The final model can also be potentially enhancealuth a parameterization with an

explicit functional dependence of tBé- on theCDI and correlation.
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* We have formulated how risk concentrations workimithis type of model. Further
work is needed to explore their mathematical behayiheir role in model calibration
and application in practice.

» Perhaps the biggest limitation of the model todaiysi reliance on costly numerical
calibration. Ideally, we would like also a closedr approximation for thBF that is
accurate and perhaps does not rely as much on mmainealibration. As such, for
example, the known solution for Normal distribusaran provide useful insights into the

more general problem.
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Appendix. Correlations of Market Indices in Develogd and Emerging
Markets.

Matrix of correlations between stock market indices (¥ years of monthly data)

Spain France Germany LUK ltaly USA Canada Japan Argentina Mexico Brazil Poland Turkey Malaysia Thailand Czech Rep. Philippines

Spain 100 0.84 0.83 078 086 075 072 055, 040 057 056 051 039 020 0.25 0.42 0.36
France 084  1.00 0.80 089 085 087 079 05 . 0.28 051 050 056 041 021 0.25 0.45 0.34
Germany | 0.83 050 1.00 079 084 078 075 057 037 057 055 055 051 0.28 0.2 0.46 0.3z
UK 073 089 0.ve 100 076 089 074 043 026 051 046 052 039 020 0.33 0.34 039
[taly 086 085 0.4 076 100070 O0OB5 059, 036 052 055 052 048 0.14 0.2 0.45 0.30
USA 07s 087 0.va 089 070 1.00 084 045 032 059 054 0458 043 0.24 0.31 0.42 0.45
Canada 072 079 0.vs 074 0B5 084 100 051 0.44 063 060 055 045 0.42 0.38 0.49 0.52
Japan 086 057 0.57 045 059 045 051 100, 030 045 046 045 044 0.19 0.27 0.46 0.19
Argentina | 0.40 028 0.37 026 036 032 044 030, 1.00 062 054 037 030 0.39 0.38 0.34 0.42
Mexico 057 051 0.57 051 052059 065 043 062 100 0BB 042 044 0.35 0.37 033 0.42
Brazil 086 050 0.55 046 055 054 060 046 054 063 1.00 045 048 0.30 0.33 0.36 0.47
Poland 051 056 0.55 052 052048 055 049 037 042 045 100 032 0.42 0.36 062 0.41
Tutkey 039 041 0.51 039 048 043 045 044 030 044 043 032 1.00 012 0.19 0.36 010
Malaysia | 020 0.21 0.28 020 014 024 042 019, 039 035 030 042 012 1.00 0.58 0.36 0.54
Thailand | 0256 0325 0.28 033 028031 038 0. 038 037 033 036 019 0.58 1.00 022 0.55
Czech Rep.| 042 045 0.46 034 045 042 049 046, 034 033 036 062 036 0.36 0.22 1.00 0.33
Philippines | 0.35 034 0.32 039 030045 052 019 042 042 047 041 010 0.54 0.55 0.33 1.00

Each country's average correlation with the different economic groups (emerging/non-emerging)

Spain France Germany UK. ltaly USA CanadaJapan Argentina Mexico Brazil Poland Turkey Malaysia Thailand Czech Rep.Philippines
Average correlation with
non-emerging economies 7% 82% 8% 7% T9% TEW  72%  S4%  34% 59% 93%  52%  44%  23% 29% 44%, I6%

Average correlation with
emerging economies 1% 39% 13% 38%  40% 42% 50% 3% 42% 45% 45% 42%  29%  38% IT% IT% 40%
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