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A Simple Multi-Factor “Factor Adjustment” for the T reatment of 

Credit Capital Diversification 4 

 

Abstract 

We present a simple adjustment to the single-factor credit capital model, which recognizes the 

diversification from a multi-factor credit setting. The model can be applied to extend the Basel II 

regulatory framework to a general multi-factor setting, thus allowing for more accurate modeling 

of diversification for portfolios across various asset classes, sectors and regions, and in particular 

within mixed portfolios in developed and emerging economies.  

 

We introduce the concepts of a diversification factor at the portfolio level, as well as marginal 

diversification factors at the obligor or sub-portfolio level, which further capture diversification 

contributions to the portfolio. We estimate the diversification factor for a family of multi-factor 

models, and show that it can be expressed as a function of two parameters that broadly capture 

the size concentration and the average cross-sector correlation. This model supports an intuitive 

capital allocation methodology, where the diversification contribution of a given sector can be 

further attributed to three components: the overall portfolio diversification, the relative size of the 

sector to the overall portfolio, and its cross-sector correlation. The estimated diversification factor 

can be tabulated for the implementation of credit portfolio decision management support tools as 

well as potential regulatory applications. As a risk management tool, it can be used to understand 

concentration risk, capital allocation and sensitivities, as well as to compute “real-time” marginal 

risk contributions for new deals or portfolios.  

 

                                                        

4 The views expressed in this paper are solely those of the authors. The authors would like to thank Michael 

Pykhtin, Michael Gordy for valuable discussions and suggestions on the methodology and the paper. 

Further thanks to Helmut Mausser and the participants in the workshop “Concentration Risk in Credit 

Portfolios” (Eltville, November 2005) for their useful comments on earlier versions of the paper. Dan 

Rosen further acknowledges the kind support of the Fields Institute and Algorithmics Inc.  
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1. Introduction 

Minimum credit capital requirements under the new Basel II Capital Accord (Basel Committee of 

Banking Supervision, 2003) are based on the estimation of the 99.9% systemic credit risk for a 

portfolio (the risk of an asymptotically fine-grained portfolio) under a one-factor Merton type 

credit model. This results in a closed form solution, which provides additive risk contributions for 

each position and that is also easy to implement. The two key limitations of this model are that it 

measures only systemic credit risk, and it might not recognize the full impact of diversification.  

 

The first shortcoming has been addressed in an analytical manner, most notably with the 

introduction of a granularity adjustment (Gordy 2003, Wilde 2001, Martin and Wilde 2002). The 

second problem is perhaps more difficult to address analytically but has greater impact, especially 

for institutions with broad geographical and asset diversification. Diversification is one of the key 

tools for managing credit risk, and it is vital that the credit portfolio framework, used to calculate 

and allocate credit capital, effectively models portfolio diversification effects.  

 

Portfolio granularity and full diversification within a multi-factor setting can be effectively 

addressed within a simulation-based credit portfolio framework. However, there are benefits for 

seeking analytical, closed-form, models both for regulatory applications as well as for credit 

portfolio management. While the use of credit portfolio simulation-based models is now 

widespread, they are computationally intensive and may not provide further insights into sources 

of risk. They are also not efficient for the calculation of various sensitivities, or provide practical 

solutions for real-time decision support. Furthermore, the accurate calculation of marginal capital 

contributions in a simulation framework has proven to be a difficult computational problem, 

which is currently receiving substantial attention from both academics and practitioners (see 

Kalkbrener et al. 2004, Merino and Nyfeler, 2004, Glasserman 2005).  Analytical or semi-

analytical methods generally provide tractable solutions for capital contributions (c.f. Martin et al. 

2001, Kurth and Tasche 2003).  

 

In terms of multi-factor credit portfolio modeling, Pykhtin (2004) recently obtains an elegant, 

analytical multi-factor adjustment, which extends the granularity adjustment technique of Gordy, 

Martin and Wilde. This method can also be used quite effectively to compute capital 

contributions numerically (given its closed form solution to compute portfolio capital). However, 

the closed-form expressions for capital contributions can be quite intricate. 
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In this paper, we present an adjustment to the single-factor credit capital model, which recognizes 

the diversification from a multi-factor setting and which can be tabulated easily for risk 

management decision support and potential regulatory application. The objective is to obtain a 

simple and intuitive approximation, based only on a small number of parameters, and which is 

perhaps less general and requires some calibration work.  

 

To develop the model, we introduce the concept of a diversification factor, DF, defined as 

 

Sf

mf

EC

EC
DF =   ,   1≤DF                            (1) 

 

where mfEC  denotes the diversified economic capital from a multi-factor credit model and 

sfEC  is the economic capital arising from the single-factor model.  

 

For a given α percentile level (e.g. α = 0.1%), we seek an approximation to the multi-factor 

economic capital of the form 

( ) ( ) ( )ααα sfmf ECDFEC ⋅≈⋅ ;;                (2) 

 
with ( ) 1; ≤⋅αDF  a scalar function of a small number of (yet to be determined) parameters.  A 

simple expression of the form (2) basically allows us to express the diversified capital as a 

function of the “additive” bottoms-up capital from a one-factor model (e.g. the Basel II model), 

and to tabulate the diversification factor (as a function of say two or three parameters). For 

potential regulatory use, we may also seek a conservative parameterization of equation (2).  

 

We estimate the diversification factor for a family of multi-factor models, and show that it can be 

expressed as a function of two parameters that broadly capture the size concentration and the 

average cross-sector correlation.  

 

The diversification factor provides a practical risk management tool to understand concentration 

risk, capital allocation and correlations, and various capital sensitivities. For this purpose, we 

further introduce marginal diversification factors at the obligor or sub-portfolio level, which 
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further account for the diversification contributions to the portfolio.5  The model (2) supports an 

intuitive capital allocation methodology, where the diversification contribution of a given sector 

can be further attributed to three components: the overall portfolio diversification, the sector’s 

relative size to the overall portfolio, and its cross-sector correlation. Finally, for a given portfolio, 

we can readily fit the model to a full multi-factor internal credit portfolio model (which may be 

simulation based). The resulting implied parameters of the model provide simple risk and 

sensitivity indicators, which allow us to understand the sources of risk and concentration in the 

portfolio. The fitted model can then be used as a practical tool for real-time computation of 

marginal capital for new loans or other credit instruments, and for further sensitivity analysis.  

 

The rest of the paper is organized as follows. We first motivate the use of multi-factor models 

through an empirical analysis of possible ranges of asset correlations across various economies, 

and particularly across developed and emerging countries. We then introduce the underlying 

credit model, the diversification factor and its general analytical justification, and the resulting 

capital allocation methodology. Thereafter, we show how the diversification factor can be 

estimated numerically using a full credit portfolio model and Monte Carlo simulations. We 

provide several parameterization exercises in the context of the Basel II formulae for wholesale 

exposures. Finally, we discuss the application of the model as a risk management tool, in 

conjunction with an internal multi-factor economic capital model, to understand concentration 

risk and capital allocation, as well as for real-time marginal economic capital calculation. 

 

2. Motivation – Example: Estimating Correlations in Developed and 

Emerging Economies 

Diversification is one of the key tools for managing credit risk and optimally allocating credit 

capital. The accurate modeling of diversification has important consequences for institutions with 

broad geographical and asset coverage, as well as for those actively managing credit risk. This is 

especially true within international banks, with substantial credit activities across different 

                                                        

5 This paper is closely related to Tasche (2006) who further presents a mathematical foundation for the 

diversification factor and diversification contributions. The author presents a two-dimensional example 

which has an analytical solution, and more generally the contribution expressions require integrals of 

dimension N-1, for problems of dimension N. 
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countries. Thus, many institutions today have in production either internally developed or 

commercial multi-factor credit portfolio models across their wholesale and retail portfolios.  

 

In this section, we motivate the importance of using multi-factor models through an empirical 

correlation analysis. As is common practice, we use equity correlations as a proxy for asset 

correlations (see for example Gupton et al 1997). Although there are many known limitations for 

using equity correlations, our objective is only to provide an intuitive picture for the ranges of 

asset correlations, as well as for the number of factors required to model these within and across 

developed and emerging economies. Thus, the broad, qualitative, conclusions we draw from the 

analysis should not be impacted by this crude approximation.   

 

We use as proxies the stock market indices of the different countries. Table 1 displays the average 

correlations between countries within developed and emerging economies and across both groups 

on the basis of monthly returns over a period of 7 years (1996-2003). The average correlation 

between the indices of developed economies stands at around 74%, whereas the average 

correlation between developed and emerging economies, as well as between emerging 

economies, is around 40%. The Appendix further presents the detailed correlation matrix. 

 

Developed 
economies

Emerging
economies

Developed
economies 0.74 0.41
Emerging
economies 0.41 0.40  

Table 1. Average asset correlations from stock market indices 

 
Alternatively, we can use aggregate indices instead of using individual market indices for each 

country6.  In this case, the correlation between the two aggregated global indices is 61%, which is 

still not very high in spite of the fact that considering general indices tends to raise correlations.  

 

To give a better characterization of the multi-factor nature of the problem, we perform a principal 

components analysis (PCA) of the individual stock market index returns. Table 2 presents the 

percentage of variance explained by the factors resulting from the PCA. A single factor accounts 

                                                        

6 Based on series of monthly returns over 7 years of the S&P Emerging Market and Morgan Stanley 

Developed Markets Indices (1996-2003). 
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for 77.5% of the variability of the developed markets, and three factors are required to explain 

more than 90%. In contrast, the first factor only explains about 47% of the variability of emerging 

market indices and seven factors are required to explain more than 90%. Although the single-

factor model is not a satisfactory simplification in either of the two cases, this model is even 

further removed from reality in the case of emerging economies.  

DEVELOPED EMERGING DEVELOPED EMERGING
Factor 1 77.5 46.7 77.5 46.7
Factor 2 8.3 14.2 85.8 60.9
Factor 3 5.4 10.7 91.2 71.7
Factor 4 3.1 7.2 94.3 78.8
Factor 5 2.2 5.9 96.6 84.7
Factor 6 1.5 4.6 98.1 89.2
Factor 7 1.1 4.3 99.2 93.5
Factor 8 0.8 3.3 100.0 96.9
Factor 9 3.1 100.0

%ACCUMULATED 
VARIABILITY%VARIABILITY

 

Table 2. PCA analysis of stock market indices 

 

To complement the previous analysis, we estimate the correlation between the PCA factors for 

developed and emerging economies. Table 3 shows the correlation structure of the first three 

principal components for each group (with Fi  and Gi denoting the factors for developed countries 

and emerging countries, respectively).   

 

 

Table 3. Correlation between PCA factors 

 

In summary, there are multiple factors that affect developed and emerging economies and, 

moreover, these factors are not the same in both cases. It is thus important to consider a multi-

factor model for dealing suitably with financial entities that have investments in both developed 

and emerging economies. 

 

Simple Two-Dimensional Diversification Example 

Consider the case of a corporate portfolio consisting of one sub-portfolio with exposures in a 

developed economy, with stronger credit standing, and a second one in an emerging economy, 
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with weaker average credits. As an example, Table 4 shows the calculation of the economic 

capital required by a portfolio with 94% of exposures in the developed economy (portfolio with 

PD of 2.5%), and the remaining 6% in the emerging economy (average PD of 5.25%). We 

assume an average LGD of 50% . The total capital required (excluding expected loss) is 9.37%, 

using the Basel II model (single-factor). Under a two-factor model with a correlation of 60%, the 

capital requirements fall to 9.01%. This is a reduction of about 4% of capital due to 

diversification or, alternatively, a factor adjustment of 0.96 (i.e. 9.01% = 9.37% x 0.96).  

 

   

Table 4. Example: two-factor credit portfolio 

 

3. A Model for the Diversification Factor  

We first introduce the underlying credit model. We then define the concepts of the diversification 

factor and the capital diversification index, and outline the estimation method. Finally we discuss 

capital allocation and risk contributions within the model. 

 

Underlying Credit Model and Stand-Alone Capital 

Consider a single-step model with K sectors (each of these sectors can represent an asset class or 

geography, etc.). For each obligor j in a given sector k, the credit losses at the end of the horizon 
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(say, one year) are driven by a single-factor Merton model 7. Obligor j defaults when a 

continuous random variable jY , which describes its creditworthiness, falls bellow a given 

threshold at the given horizon. If we denote by jPD the obligor’s (unconditional) default 

probability and assume that the creditworthiness is standard normal, we can express the default 

threshold by ( )jPDN 1− .  

 

The creditworthiness of obligor j is driven by a single systemic factor: 

 

jkkkj ZY ερρ −+= 1          (3) 

 

where kZ  is a standard Normal variable representing the systemic factor for sector k, and the jε  

are independent standard Normal variables representing the idiosyncratic movement of an 

obligor’s creditworthiness. While in the Basel II model all sectors are driven by the same 

systemic factor Z, here each sector can be driven by a different factor.  

 

We assume further that the systemic factors are correlated through a single macro-factor, Z  

 

KkZZ kk ,...,1,1 =−+= ηββ                    (4) 

 

where kη  are independent standard Normals. For simplicity we have assumed a single correlation 

parameter for all the factors (as we seek a simple parametric solution). Later, we allow for this 

parameter β  to be more generally an average factor correlation for all the sectors. 

 

For ease of notation, assume that for obligor j  has a single loan with loss given default and 

exposure at default given by jj EADLGD ,  respectively. As shown in Gordy (2003), for 

asymptotically fine-grained sector portfolios, the stand-alone α -percentile portfolio loss for a 

                                                        

7 For consistency with Basel II, we focus on a one-period Merton model for default losses. The 

methodology and results are quite general and can be used with other credit models, and can also 

incorporate losses due to credit migration, in addition to default.   
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given sector k, )(αkVaR , is given by the sum of the individual obligor losses in that sector, when 

an α -percentile move occurs in the systemic sector factor kZ : 

 

( ) ( )














−
−

⋅⋅=
−

∈
∑

k

kj
j

kSectorj
jk

zPDN
NDEALGDVaR

ρ
ρ

α
α

1

1

        

 

where αz denotes the α -percentile of  a standard normal variable.  

 

Consistent with common risk practices and with the Basel II capital rule, we define the stand-

alone capital for each sector, ( )αkC , to cover only the unexpected losses. Thus, 

( ) ( ) kkk ELVaREC −= αα  , where jj
kSectorj

jk PDDEALGDEL ⋅⋅= ∑
∈

 are the expected sector 

losses.8 The capital for sector k can then be written as 

 

( ) ( )













−














−
−

⋅⋅=
−

∈
∑ j

k

kj
j

kSectorj
jk PD

zPDN
NDEALGDEC

ρ
ρ

α
α

1

1

    (5) 

 
Under Basel II, or equivalently assuming perfect correlation between all the sectors, the overall 

capital is simply the sum of the stand-alone capital for all individual sectors  

 

∑
=

=
K

k
k

sf ECEC
1

             (6) 

 
(for simplicity, we omit the parameter α  hereafter). 

 

The Diversification Factor and Capital Diversification Index  

In equation (1), we define the diversification factor, DF, as the ratio of the capital computed 

using the multi-factor model and the stand-alone capital (now defined in equation 6), 

sfmf ECECDF /= , 1≤DF .  

 

                                                        

8 The following discussion still holds if capital is defined by VaR, by simply adding back the EL at the end 

of the analysis. 



  

 11

As given in equation (2), for a given quantile, we seek to approximate DF, by a scalar function of 

a small number of intuitive parameters (say two or three). This allows us to express the 

(diversified) economic capital as a function of the “additive” bottom-up capital from the one-

factor model (equation 6), and a “factor adjustment” (which can be tabulated)  

 

( ) ∑
=

×⋅≈
K

k
k

mf ECDFEC
1

  

 
Let us now first motivate the parameters used for this approximation. We can think of 

diversification basically being a result of to two sources. The first one is the correlation between 

the sectors. Hence, a natural choice for a parameter in our model is the correlation β of the 

systemic sector factors Zk. The second source is the relative size of various sector portfolios. 

Clearly, one dominating very large sector leads to high concentration risk and limited 

diversification. So we seek a parameter representing essentially an “effective number of sectors” 

accounting for their sizes. Ideally, this should also account for the differences in credit 

characteristics as they affect capital. Thus, a sector with a very large exposure on highly rated 

obligors, might not necessarily represent a large contribution from a capital perspective. 

 

Define the capital diversification index, CDI, as the sum of squares of the capital weights in each 

sector  

( )
2

2

2

∑
∑

==
k

ksf

k
k

w
EC

EC
CDI          (7) 

 

with sf
kk ECECw /=  the contribution to one-factor capital of sector k. The CDI is simply the 

well-known Herfindahl concentration index applied to the stand-alone capital of each sector 

(rather than to the exposures, as is more commonly used).  Intuitively, it gives an indication of the 

portfolio diversification across sectors (not accounting for the correlation between them). For 

example, in the two-factor case, the CDI ranges between 0.5 (maximum diversification) and one 

(maximum concentration). The inverse of the CDI can be interpreted as an “effective number of 

sectors” in the portfolio, from a capital perspective. Note that one can similarly define the 

Herfindahl index for sector or counterparty exposures (EADs), which results in a measure of 

concentration in terms of the size of the portfolio (and not necessarily the capital). 
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It is easy to understand the motivation for introducing the CDI. For a set of uncorrelated sectors, 

the standard deviation of the overall portfolio loss distribution is given by ∑=
k kP CDI σσ , 

with kP σσ ,  the volatilities of credit losses for the portfolio and sector k, respectively. More 

generally, for correlated sectors, denote by β~ the single correlation parameter of credit losses 

(and not the asset correlations). Then, the volatility of portfolio credit losses is given by9 

 

( ) ∑+−=
k

kP CDI σββσ ~~
1         (8) 

 
If credit losses were normally distributed, a similar equation to (8) would apply for the credit 

capital at a given confidence level, fNmf ECCDIDFEC 1)
~

,( ⋅= β , with 

( ) ββ ~~
1 +−= CDIDF N , the diversification factor for a Normal loss distribution. Figure 1 

shows a plot of NDF as a function of the CDI for different levels of the sector loss correlation, 

β~ .  For example, for a CDI of 0.2 and a correlation of 25%, the diversified capital from a multi-

factor model is about 60% of the one-factor capital, if the distribution is close to Normal). 

 

Although credit loss distributions are not Normal, it seems natural to attempt a two-factor 

parameterization for equation (1) such as 

 

( ) ( ) sfmf ECCDIDFCDIEC ⋅≈ ββ ,,         (9) 

                                                        

9 One can explicitly obtain the relationship between asset and loss correlations. For the simplest case of 

large homogeneous portfolios of unit exposures, default probability, PD, with a single intra-sector asset 

correlation ρ and correlation of sector systemic factors  β , the systemic credit loss correlation is given by  

( )[ ] ( )[ ]211
2

211
2 ),(),(),(),(

~
PDPDNPDNNPDPDNPDNN −−= −−−− ρρββ  

with ),,(2 ρbaN  the standard  bivariate normal distribution of random variables a and b and correlation ρ. 

Note also that the variance of portfolio losses is given by the well-known formula 

( )[ ])()(),(),( 1111
2

,

2
jiijjijj

ji
iip PDNPDNPDNPDNNEADLGDEADLGD −−−− −=∑ ρσ  

where 
kij ρρ =  for obligors in the same sector and

lkij ρρβρ =  for obligors in different sectors. 
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with the sector systemic factor correlation substituting the loss correlation, given it’s availability, 

a priori, from the underlying model.  In the rest of the paper, we refer to the model given by 

equations (3), (4), (5), (6) and (9) as the DF credit capital model. 
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Figure 1. Idealized diversification factor for Normal distributions  

 

Clearly, we do not expect the parameterization (9) to be exact, nor for the DF to follow 

necessarily the same functional form as NDF .  However, as explained earlier, we can expect the 

two parameters to capture broadly the key sources for diversification: homogeneity of sector sizes 

and cross-sector correlation. So it remains an empirical question to see whether these two 

parameters are enough to create a reasonable approximation of the diversification factor. Note 

also that, for regulatory use, we might seek to estimate a conservative diversification factor DF, 

so finding a reasonable upper bound might be more appropriate for this type of application.   

 

Estimating the Diversification Factor, DF 

We propose to estimate the DF function numerically using Monte Carlo simulations. In general, 

this exercise requires the use of a multi-factor credit portfolio application (which might itself use 

a simulation technique). The parameterization obtained for DF can then be tabulated and used 

generally both as a basis for minimum capital requirements and for quick approximations of 

economic capital in a multi-factor setting, without recourse to further simulation.  

 

The general parameterization methodology is as follows. We assume in each simulation, a set of 

homogeneous portfolios representing each sector. Each sector is assumed to contain an infinite 
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number of obligors with the same PD and EAD. Without loss of generality, we set LGD = 100%, 

and the total portfolio exposure equal to one, 1=∑ kEAD .  

 

The numerical experiments are performed as follows:  

• Assume a fixed average cross-sector correlation β and number of sectors K. We run a large 

number of capital calculations, varying independently in each experiment10: 

• the sizes of each sector 

• KkEADPD kkk ,...,1,,, =ρ  

• In each run, we compute ),...,1( KkECk = , sfEC  and CDI from the simple one-factor 

analytical formula and also the “true” mfEC from a full multi-factor model11   

• We plot the ratio of ( sfmf ECEC / ) vs. the CDI. 

• To get the overall DF function for a level of correlation β  we then repeat the exercise 

varying the number of sectors K 

• We then repeat the exercise for various levels of correlation 

• Finally, we estimate the function DF (CDI, β) by fitting a parametric function to the points 

 

As an example, Figure 2 presents the plot for K=2 to 5 and β =25% and random independent 

draws with %]20%,2[,%]20%,02[. ∈∈ kkPD ρ . The dots represent the various experiments, 

each with different parameters. The colours of the points represent the different number of 

sectors. Simply for reference, for each K, we also plot the convex polygons enveloping the points. 

Figure 2 shows that the approximation is not perfect, otherwise all the points would lie on a line 

(not necessarily straight). However, all the points do lie within a well bounded area, suggesting it 

as a reasonable approach. A function DF can be reliably parameterized either as a fit to the points 

or, more conservatively, as their envelope. For example, for a CDI of 0.5, a diversification factor 

of 80% results in a conservative estimate of the capital reduction incurred by diversification. 

                                                        

10 In practice, one must use reasonable ranges for the parameters as required by the portfolio. For Basel II 

adjustments, we do not have to sample independently the asset correlationskρ , since these are either 

constant or prescribed functions of PD, for each asset class. As shown later, this results in tighter estimates. 

11Except for the two-factor case, where numerical integration can be used, multi-factor capital is calculated 

using a MC simulation, although some analytics might be possible as explained earlier. 
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This exercise is only meant to illustrate the parameterization methodology. We have shown that 

even in the case where sector PDs, exposures and intra-sector correlations are varied 

independently, two factors (CDI, β) provide a reasonable explanation of the diversification factor. 

One can get tighter approximations by adding explanatory variables or by constraining the set 

over which the approximation is valid. In practice, for example, PDs and intra-sector correlations 

do not vary independently and they might only cover a smaller range. In Section 4, we provide a 

more rigorous parameterization and examples in the context of the Basel II formulae. 

DF

CDI

DF

CDI
 

Figure 2. Empirical DF as a function of the CDI (K=2 to 5, and ββββ=25%) 

. 

Capital Allocation and Risk Contributions 

Under a one-factor credit model, capital allocation is straightforward. The capital attributed to a 

given sector is the same as its stand-alone capital, kEC , since the model does not allow further 

diversification. Under the full multi-factor model, the total capital is not necessarily the sum of 

the stand-alone capitals in each sector. Clearly, the standalone risk of each component does not 

represent a valid contribution for sub-additive risk measures in general, since it fails to reflect the 

beneficial effects of diversification. Rather, it is necessary to compute contributions on a marginal 

basis. The theory behind marginal risk contributions and additive capital allocation is well 

developed and the reader is referred elsewhere for its more formal derivation and justification 

(e.g. Gouriéroux  et al 2000, Hallerbach 2003, Kurth and Tasche, 2003, Kalkbrener et al 2004). 

 

Using the factor adjustment approximation (9), one might be tempted simply to allocate back the 

diversification effect evenly across sectors, so that the total capital contributed by a given sector 

is kECDF ⋅ . We refer to these as the unadjusted capital contributions. This would not account, 
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however, for the fact that each sector contributes differently to the overall portfolio 

diversification. Instead, we seek a capital decomposition of the form  

  

∑
=

⋅=
K

k
kk

mf ECDFEC
1

         (10) 

 
We refer to the factors kDF  in equation (10) as the marginal sector diversification factors.  

 

If DF only depends on CDI and β  (where the correlation can also represent an average 

correlation for all sectors, as shown below), it is then a homogeneous function of degree zero in 

the kEC ’s (indeed it is homogeneous in the size of each sector exposures as well). This is a 

direct consequence of both the CDI and the average β  (as defined later) being homogenous of 

degree zero. Thus, the multi-factor capital formula (9) is a homogeneous function of degree one. 

Applying Euler’s theorem, leads to the additive marginal capital decomposition (10) with12 

 

Kk
EC

EC
DF

k

mf

k ,...,1, =
∂
∂=         (11) 

 
Under the simplest assumption that all sectors have the same correlation parameter β, we can 

show that 






 −⋅+= CDI
EC

EC
DFDFDF

sf
k

k '2         (12) 

 
where CDIDFDF ∂∂= /'  is the slope of the factor adjustment for the given correlation level β. 

Expression (11) shows that the marginal sector diversification factor is a combination of the 

overall portfolio DF plus an adjustment due to the “relative size” of the sector to the overall 

portfolio. Intuitively, for DF >0 and all sectors having the same correlation β, a sector with small 

stand-alone capital ( CDIECEC sf
k </ ) contributes, on the margin, less to the overall portfolio 

capital; thus, it gets a higher diversification benefit kDF .  

 
                                                        

12 Tasche (2006) formally generalizes the diversification factor and the marginal diversification factors 

introduced here for a general risk measure (e.g. he defines the marginal diversification factor of a given 

position, with respect to a given risk measure, as the ratio of its risk contribution and its stand alone risk). 
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In the more general case, each sector has a different correlation level βk . We define in general the 

average factor correlation as follows.  

 

Assume a general sector factor correlation matrix, Q (this can be more general than that resulting 

from equation 2, where ijQ jiij ≠= ,ββ ), and a vector of portfolio weights ( )T
SwwW ...1= . 

We define the average sector factor correlation as  

 

22

22

δϑ
δσβ

−
−==

∑∑

∑∑

≠

≠

i ij
ji

i ij
jiij

ww

wwQ

   

where QWWT=2σ  is the variance of the random variable given by the weighted sum of the 

factors, ( ) 2222   and  ∑∑ ==
i ii i ww ϑδ . β  is an average correlation in the sense that 

2σ== QWWBWW TT , with B the correlation matrix all the non-diagonal entries equal to β . For 

our specific case, we chose the portfolio weights to be the stand alone capital for each sector. 

Therefore, ( ) ( )22222     and  sf

i ii i ECECEC === ∑∑ ϑδ . 

 

Then, the marginal sector diversification factor is given by 

 

( ) [ ]β
β

−⋅
−

−⋅
∂

∂+




 −⋅
∂
∂+= k

sf
k

sf
k

k Q
CDI

ECECDF
CDI

EC

EC

CDI

DF
DFDF

1

1
22         (13) 

where 

∑

∑

≠

≠=

kj
j

kj
jkj

k EC

ECQ

Q   

is the average correlation of sector factor k to the rest of the systemic sector factors in the 

portfolio. Thus, sectors with lower than average correlation to the rest of the systemic sector 

factors in the portfolio get a higher diversification benefit, as one would expect.  
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The marginal capital allocation resulting from the model leads to an intuitive decomposition of 

diversification effects (or concentration risk) into three components: overall portfolio 

diversification, sector size and sector correlation:13 

 
 CorrSizek DFDFDFDF ∆+∆+=                (14) 

 

4. Parameterization Exercises 

Section 3 presented a simple example to illustrate the parameterization methodology for a general 

problem where sector PDs, exposures and intra-sector correlations where varied independently. 

Even in this case, two parameters (CDI, β) provided a reasonable explanation of the 

diversification factor. One can get a tighter approximation, by either searching for more 

explanatory variables, or by constraining the set over which the approximation is valid. In 

practice, PDs and intra-sector correlations do not vary independently and they might only vary 

over smaller ranges. For example, under the Basel II capital rules, the asset correlation is either 

constant on a given asset class (e.g. revolving retail exposures, at 4%) or varies as a function of 

PDs (e.g. wholesale exposures).14 See also Lopez (2004), which shows that average asset 

correlation is a decreasing function of PD and an increasing function of asset size. 

 

In this section, we present more rigorous parameterizations and error analysis for the case of 

wholesale exposures (corporates, banks and sovereign) in the context of Basel II.  We first 

describe in detail the case of a two-factor parameterization and a given cross-sector correlation β, 

and then extend the results further to multiple factors and correlation levels. Our objective in this 

section is not to provide a complete parameterized surface, but rather to develop a good 

understanding of the basic characteristics of the diversification factor surface, the approximation 

errors and the robustness of the results. 
                                                        

13 When one defines the average correlation as an arithmetic average, ∑ ⋅= k
sf

k ECEC ββ )/( , the 

resulting formula for the marginal sector diversification factor is simpler and given by 

 [ ]ββ
β

−⋅
∂

∂+




 −⋅
∂
∂+= ksf

k
k

DF
CDI

EC

EC

CDI

DF
DFDF 2              

Although simpler, this definition has some undesirable properties which result in inconsistencies. 

14 In this case, the asset correlation is given by       
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Two-Dimensional Parameterization for Wholesale Exposures 

Consider a portfolio of wholesale exposures in two homogeneous sectors, each driven by a single 

factor model. We assume a cross-sector correlation β = 60%. For simplicity, assume all loans in 

the portfolio have a maturity of one year. To estimate the diversification factor function, DF 

(CDI, β=60% ), we perform a Monte Carlo simulation of three thousand portfolios. The PDs for 

each sector portfolio are sampled randomly and independently, from a uniform distribution in the 

range [0,10%]. We further assume that in each sector, asset correlations are given as a function of 

PDs from the Basel II formula for wholesale exposures without the firm-size adjustment. The 

percent exposure in each sector is sampled randomly as well, and without loss of generality we 

assume 100% LGDs. For each of the 3,000 portfolios, the economic capital is calculated using a 

MC simulation with one million scenarios on the sector factors (assuming β=60%), and assuming 

these are granular portfolios (hence computing the conditional expected portfolio losses under 

each scenario).  Economic capital is estimated as the 99.9% percentile of the credit losses net of 

the expected losses. 

 

Figure 3 compares the capital obtained for the simulated portfolios using a one-factor model and 

a two-factor model, as a function of the average default probability (to make the number more 

realistic, we plot the capital assuming 50% LGDs). The two-factor model generally results in 

capital requirements that are lower than those of the single-factor model, as the circles (in blue), 

which correspond to the single-factor model, are generally above the squares  (in red), which 

correspond to the two-factor model. 

 

 

Figure 3. One-factor and two-factor capital as a function of average PDs (LGD=50%) 
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Figure 4 plots the diversification factor, DF, as a function of the CDI for the simulated portfolios. 

With two factors, the CDI ranges between 0.5 (maximum diversification) and 1 (maximum 

concentration).  There is a clear relationship between the diversification factor and the CDI, and a 

simple linear model fits the data very well, with an R2 of 0.96. Thus, we can express the 

diversification factor as15 

CDICDIDF ⋅+== 3228.06798.0)6.0,( β  

 

y = 0,3228x + 0,6798
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Figure 4. Two-factor diversification factor as a function of the CDI (ββββ=60%) 

 

Figure 5 displays, for all simulated portfolios, the actual economic capital from the two-factor 

model against that estimated from the DF model resulting from the regression in Figure 4. There 

is clearly a close fit between the two models, with the standard error of the estimated 

diversification factor model of only 10 basis points. Finally, Table 5 summarizes the resulting 

diversification factor in table format. Accounting for maximum diversification, the capital 

savings are 16% .  

 

                                                        

15 Similarly, one can obtain the parametric envelop of the data, to get a more conservative adjustment. 



  

 21

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

0% 2% 4% 6% 8% 10% 12% 14% 16% 18%

Actual Capital (Two-factor model)

E
st

im
at

ed
 C

ap
it

al
 (

D
F

 M
o

d
el

)

 

Figure 5. Capital from DF model vs. actual two-factor capital (ββββ=60%) 

 

CDI
Diversification 

Factor 
50% 84%
55% 86%
60% 87%
65% 89%
70% 91%
75% 92%
80% 94%
85% 95%
90% 97%
95% 99%
100% 100%

Intercept 0.6798
slope 0.3228
R^2 0.97  

Table 5. Tabulated diversification factor (two-factors) (β β β β = 60%) 

 

To understand the application of this resulting model to capital allocation, consider a portfolio 

with 70% of the one-factor capital in sub-portfolio 1 and 30% in sub-portfolio 2. Table 6 presents 

a summary of the capital contributions. The CDI = 0.58, which leads to DF = 86.3% . As defined 

earlier, the unadjusted capital contributions apply the same diversification factor of 86.3% to each 

sub-portfolio, thus retaining the same proportion of allocation as the SA contributions. However, 

consistent with a marginal risk allocation, the smaller portfolio contributes more to the overall 

diversification and gets an adjustment factor of 67%, while the larger portfolio gets a 94% factor. 

The marginal capital contributions of the portfolios are 66.1 (76.6%) and 20.2 (23.4%), 

respectively (summing to 86.3). 
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Capital   
One-Factor

SA Capital 
Contributions 

%

Unadjusted 
Capital 

Contributions

Marginal Sector 
Diverisfication 

Factor 

Marginal Sector  
Capital 

Contributions

Marginal Sector  
Capital 

Contributions %

P1 70.0 70.0% 60.4 0.94 66.1 76.6%
P2 30.0 30.0% 25.9 0.67 20.2 23.4%
Total 100.0 100% 86.3 86.3 100%

CDI 0.58
DF 86.3%  

Table 6. Capital contributions for a two-factor model (ββββ=60%) 

 

Parameterization of the Surface 

We now investigate the behaviour of the surface as a function of the number of factors and also 

for other cross-sector correlation levels. We now consider portfolios of wholesale exposures 

consisting of k homogeneous sectors, k=2,3,…,10. The cross-sector correlation is β = 60%. We 

follow the same estimation procedure as before to estimate the diversification factor function, DF 

(CDI, β=60% ) for each k, using Monte Carlo simulations of three thousand portfolios, each.  

 

Figure 6 shows the detailed regression plots for k=4, 7, 10. Table 7 presents the DF tabulated for 

each k. It also presents the coefficients of the regressions and, finally, an average over all the 

range. In all cases from 2-10 factors linear model fits the data well with R2 ranging from 96-98%, 

and standard approximation errors of 10-11 bps. It is clear that at this correlation level, a linear 

model fits the data very well, from this example, as is further shown in Figure 7, which plots the 

nine regression lines. 
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Figure 6. DF model regressions for k=4, 7, 10 (ββββ=60%) 
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Figure 7. DF model regression lines for k=2, …, 10 (ββββ=60%) 
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CDI \ Factors 2 3 4 5 6 7 8 9 10 Average
10% 70.7% 70.7%
15% 72.3% 71.9% 72.2% 72.4% 72.2%
20% 74.0% 74.0% 74.0% 73.6% 73.9% 74.0% 73.9%
25% 75.0% 75.7% 75.7% 75.7% 75.3% 75.6% 75.7% 75.5%
30% 76.8% 77.4% 77.4% 77.4% 77.0% 77.3% 77.4% 77.2%
35% 79.1% 78.5% 79.1% 79.1% 79.0% 78.7% 79.0% 79.1% 78.9%
40% 80.7% 80.2% 80.8% 80.8% 80.7% 80.4% 80.7% 80.8% 80.6%
45% 82.4% 81.9% 82.5% 82.5% 82.4% 82.1% 82.4% 82.4% 82.3%
50% 84.1% 84.1% 83.7% 84.2% 84.2% 84.1% 83.8% 84.1% 84.1% 84.0%
55% 85.7% 85.8% 85.4% 85.9% 85.8% 85.8% 85.5% 85.8% 85.8% 85.7%
60% 87.3% 87.4% 87.1% 87.6% 87.5% 87.5% 87.2% 87.5% 87.5% 87.4%
65% 89.0% 89.1% 88.8% 89.3% 89.2% 89.2% 88.9% 89.2% 89.1% 89.1%
70% 90.6% 90.8% 90.6% 91.0% 90.9% 90.8% 90.6% 90.9% 90.8% 90.8%
75% 92.2% 92.5% 92.3% 92.7% 92.6% 92.5% 92.4% 92.6% 92.5% 92.5%
80% 93.8% 94.1% 94.0% 94.4% 94.3% 94.2% 94.1% 94.3% 94.2% 94.1%
85% 95.4% 95.8% 95.7% 96.1% 95.9% 95.9% 95.8% 96.0% 95.9% 95.8%
90% 97.0% 97.5% 97.5% 97.8% 97.6% 97.6% 97.5% 97.7% 97.5% 97.5%
95% 98.6% 99.1% 99.2% 99.5% 99.3% 99.3% 99.2% 99.4% 99.2% 99.2%
100% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Intercept 0.6798 0.6734 0.6641 0.6722 0.6731 0.6726 0.6675 0.6706 0.6732 0.6718
slope 0.3228 0.3349 0.3449 0.3397 0.3369 0.3368 0.3413 0.3406 0.3359 0.3371
R^2 96.3% 96.9% 97.2% 97.6% 98.0% 97.9% 97.9% 98.0% 98.1%

 

Table 7. Tabulated results for the DF model for k=2,…10 (ββββ=60%) 

 

Figure 8 plots the linear regressions from the same exercise for a correlation of β=40%, for 

k=2,…,10. The R2 are in the order 97 to 98% and the standard errors range between 12-15 bps.  
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Figure 8. DF regression lines for k=2, …, 10 (ββββ=40%) 
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A linear regression still performs quite well in fitting the actual economic capital for the MC 

generated portfolios, but is not as accurate as in the previous case (β=60%). The effect of 

curvature is illustrated in Figure 9, which shows a linear and a quadratic fit through the data for 

the case when the portfolio contains 10 sectors. 
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 Figure 9. DF model linear and quadratic fit for k=10 (ββββ=40%) 

 

The quadratic fit clearly fits the data better, and in particular at both ends of the range, where the 

linear fit is clearly off (e.g. resulting in a higher than 100% diversification factor, which would 

need to be capped). Figure 10 plots the average linear and quadratic fits and provides the 

functions in tabular form for comparison. There are differences in the estimated DF of up to 3%. 

In practice, the quadratic fit provides added value. This quadratic model is given by 
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Figure 10. DF model linear and quadratic functions (ββββ=40%) 
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The non-linear nature of the DF tends to increase with decreasing correlation level. One can get 

some intuition to this by revisiting the functional form for portfolio loss standard deviation as 

given by equation (8) and Figure 1. To illustrate this effect further, Figures 10 and 11 present he 

results for two uncorrelated factors (β=0%). 16 
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Figure 11. DF model linear and quadratic fit for k=2 (ββββ=0%) 
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Figure 12. DF model linear and quadratic functions (ββββ=0%) 

 

Finally, to get an overall picture of the DF surface, Figure 13 plots the function for the three 

levels of correlation, as computed in this section. Note the similarity of with Figure 1. 

 

                                                        

16 In Figure 12, the DF is capped at 100% and also the quadratic function is adjusted at the end to get 

precisely DF=100% for a 100% CDI. 



  

 27

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

0 0.2 0.4 0.6 0.8 1

CDI

D
F

beta=60%

beta=40%

beta=0%

 

 Figure 13. DF model linear and quadratic functions (ββββ=0%) 

 

5. The Diversification Factor as a management tool 

In addition to its potential regulatory applications, we now focus on the application of the DF 

model as a risk management tool to  

• understand concentration risk and capital allocation 

• identify capital sensitivities to sector size and correlations 

• compute “real-time” marginal risk contributions for new deals or portfolios 

 

In this section, we first summarize the parameters of the model and the sensitivities derived from 

it, and discuss their interpretation as risk and concentration indicators. We then explain how the 

model can be used in conjunction with a full multi-factor internal credit capital model,  by 

computing its implied parameters. We illustrate this application with a simple example. 

 

Summary of Model Parameters as Risk and Concentration Indicators 

The intuitiveness of the DF model allows us to view its parameters as useful risk and 

concentration summary indicators. We divide these into, sector-specific indicators, portfolio 

capital indicators, capital contributions and correlations, and sensitivities. For completeness, we 

summarize these in Table 8. 
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Sector specific indicators 

(for sectors k=1,…,K) 17 

Portfolio capital indicators Marginal capital contributions 

(for sectors k=1,…,K) 

Inputs 

kρ  Intra-sector (asset) 

correlation 

sfEC  Capital one-factor 

(undiversified) 
kβ  Sector factor correlation 

weights 

kPD  average default 

probability 

CDI Capital 

diversification index 
kQ  Average correlation of a 

sector factor to the other 

sectors 

kEAD  

kLGD  

Average exposure, 

loss given default 
β  Average cross sector 

correlation 

  

Outputs 

kEC  Stand-alone capital DF Diversification factor 
kDF  Sector diversification factor 

corr
k

size
kk DFDFDFDF ∆+∆+=

 

  mfEC  Economic capital 

(diversified) 

size
kDF∆

 

Sector size diversification 

component  

  

β∂
∂DF  

Sensitivity of DF to 

changes in average 

cross-correlation 

corr
kDF∆

 

Sector’s correlation 

diversification component 

  

CDI

DF

∂
∂

 
Sensitivity of DF to 

changes in CD 

  

  
Table 8. Summary parameters and risk indicators of DF model  

 

We obtain the sensitivities of the diversification factor to the CDI and the average cross-sector 

correlation directly as slopes from the estimated DF surface. By using the chain rule, it is 

straightforward to get the sensitivities of the factor to the sector SA capital (ECk) or to its 

correlation parameters (kQ , kβ ). In addition, the following sensitivities are useful for 

management purposes: 

• ),...,1(, KkDFEC
EC

k
k

mf
==∂

∂  – change in economic capital per unit of stand-alone 

capital for k-th sector (it can also be normalized on a per unit exposure basis) 

                                                        

17 Commonly, the (exposure-weighted) average EAD and LGD for each sector are computed, and the 

average PD is implied from the actual calculation of expected losses. 
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• sfcmf
ECdfEC ⋅=∂

∂
β

 – change in economic capital per one unit of average correlation (with  

β∂∂= DFdf c  , as above, the slope of the DF surface in the direction of the average 

correlation) 

• 
( )( ) ),...,1(,

22 Kk
EC

ECdfECEC
k

ki i

sf

sfc

k

mf

k

mf
=













⋅








−
⋅=








∂

∂⋅







∂

∂=∂
∂ ∑ ≠

β
β

δβ
β

ββ
     

– change in economic capital per one unit of sector factor correlation for k-th sector 

 

Implied Parameters for an Internal Multi-Factor Economic Capital Model 

The DF model can be fitted effectively to a full multi-factor economic capital model by 

calculating its implied parameters. The fitted model, with its implied parameters, then can be used 

to understand the underlying problem better, for communication purposes, or as a simpler and 

much faster model for real-time calculation or extrapolation. In this sense, this is akin to using the 

implied volatility surface from option prices with the Black-Scholes model, or the implied 

correlation skew in CDOs in the context of a copula model.  

 

Assume, for ease of exposition, that we have divided the portfolio into K homogeneous sectors 

(not necessarily granular), each with a single PD, EAD and LGD (in practice this latter 

assumption can be relaxed).18 The inverse problem solves for 2K implied correlation parameters 

( kk βρ , ), thus requiring as many statistics from the internal model. A straightforward algorithm 

to fit the model is as follows: 

• Compute for each sector portfolio k=1,…,K , its stand-alone capital from the internal multi-

factor economic capital model 

• Solve for the implied intra-sector correlation, kρ , from equation (5). If the portfolio is fully 

granular (or we are simply interested in systemic capital), this provides an indication of the 

average correlation (even for non- homogeneous portfolios).  For non-granular portfolios, this 

                                                        

18 Sector homogeneity is not a requirement. Note that equation (4) does not require single PDs, EADs and 

LGDs for each sector.  
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implied correlation adjusts the model granularity effects; the less granular the portfolio, the 

higher the implied correlation.19 

• Compute the total stand-alone capital,sfEC , and CDI from the K stand-alone capitals kEC  

for each sector. 

• Compute the overall economic capital for the portfolio, mfEC , from the internal multi-factor 

capital model. 

• Solve for the average correlation, β , implied from the equation (9)    

  ( ) ( ) sfmf ECCDIDFCDIEC ⋅= ββ ,,  , 

assuming that the DF surface is available in parametric (or non-parametric) form 

• Computes the K marginal capital contributions to each sector, kk ECDF ⋅ , from the internal 

economic capital model.  

• Solve for the implied inter-sector correlation parameters kQ and kβ  from the marginal 

capital contributions.  

 

We can see from this algorithm, that the DF model basically provides a map from the correlation 

parameters to various capital measures:  

• intra-sector correlations �� stand-alone capital 

• overall capital (or the diversification factor) ��  average cross-sector correlation 

• marginal capital contributions �� relative sector size and relative cross-sector 

correlation  

 

Example: Model with Implied Parameters  

We now present a stylized example to illustrate these concepts. Consider the credit portfolio with 

four sectors given in Table 9. The first two sectors have a PD of 1% and exposure of 25; the other 

two sectors are lower PD (0.5%). For simplicity we assume a 100% LGD. The third and fourth 

column give the expected losses (EL) expressed in monetary terms and as percent of total EL. The 

following two columns give the computed stand-alone (SA) capital computed form the internal 

                                                        

19 This is consistent with Vasicek (2002), where it is shown that under the one-factor Merton model, one 

can approximate the losses of non-granular portfolios by applying the Vasicek formula using ( ρ + (1−ρ)δ ) 

in place of the actual correlation ρ, where δ  is the Herfindahl index on the sector exposures. We can also 

use this approximation further to get the implied asset correlation ρ for the sector. 
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multi-factor model (total and percent). The last column shows the implied intra-sector 

correlations, obtained by inverting the stand-alone capital formula (5). 

 

Portfolio EAD PD EL EL %
 SA Capital     

(One-Factor)
 SA Capital %      
(One-Factor) 

Implied Rho

P1 25 1.0% 0.25 33.3% 3.4 35.3% 20.1%
P2 25 1.0% 0.25 33.3% 2.1 21.5% 12.4%
P3 40 0.5% 0.20 26.7% 3.8 39.6% 21.9%
P4 10 0.5% 0.05 6.7% 0.4 3.7% 8.6%

Total 100 0.75 100.0% 9.7 100.0%

CDI 32.9%

 

Table 9. Four-sector portfolio: characteristics and stand-alone capital  

 

The portfolio total exposure is 100, the EL is 75bps and the stand-lone capital is 9.7%. The CDI is 

close to one third, implying that there are roughly three effective sectors. We can start 

understanding the effect of various credit parameters by comparing the contributions to total 

exposure, EL and SA capital. The differences in exposure and EL contributions can be explained 

by the interaction of the exposures with the PDs and LGDs. The intra-sector correlations explain 

the differences between EL and capital contributions. For example, the fourth sector represents 

one tenth of the exposures, almost 7% of EL, but less than 4% of the capital. This indicates that it 

is first a low PD sector and also that it has a lower than average implied intra-sector correlation. 

Consider, in contrast, the third sector portfolio, which constitutes 40% of the total exposure, 27% 

of EL and about 40% again of SA capital. This sector’s low PD reduces its EL contribution, but 

its higher implied asset correlation (22%) increases its share of SA capital. The first sector’s high 

capital contribution is explained by both high PD and intra-sector correlation.  

 

Table 10 summarizes the results for overall economic capital and implied sector factor 

correlations. First, the multi-factor economic capital model is used to compute the overall 

economic capital, which is then used to calculate the DF and average sector factor implied 

correlation. The economic capital is 7.3% of the total exposure, implying a diversification factor 

DF = 75.5% (7.3 = 0.755 x 9.7).  We use the tables from the previous section to estimate the 

average correlation β ; a correlation of 40% gives DF=68% and a correlation of 60% gives 

DF=78.2%. Using linear interpolation, we find the implied average correlation to be %9.54=β . 
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Portfolio Exposures
SA Capital 

(One-Factor)
Implied Rho

Capital %         
(Flat Beta=54.6%)

Economic Capital 
%

Implied Qk's

P1 25 35.3% 20.1% 36.1% 31.9% 45.7%

P2 25 21.5% 12.4% 19.0% 17.2% 49.7%

P3 40 39.6% 21.9% 42.3% 47.5% 65.6%

P4 10 3.7% 8.6% 2.6% 3.4% 66.8%

Total 100

SA Capital CDI DF Capital
Implied 

Average Beta

9.7 32.9% 75.5% 7.3 54.9%

 

 
Table 10. Multi-factor capital and implied correlations  

 

The fifth column of Table 10 gives the capital contributions assuming that all sector factor 

correlations are equal to the average of 54.9%. These contributions are close but do not equal the 

SA capital contributions. In this case, every sector factor is equally correlated with the overall 

portfolio, and the only difference stems from the size component of the sector diversification 

factor size
kDF∆ . The decomposition of the sector diversification factor for the case of a flat 

correlation is given on the left side of Table 11. Compared to the stand-alone case, the size 

component of the sector diversification factor increases contributions for the two biggest sectors 

(P1 and P3) and decreases them for the two small ones (P2 and P4). While the overall 

diversification factor is 75.6%, the marginal sector diversification factors range from 53% (P4) to 

81% (P3). 

 

Portfolio DF k
Portfolio 

Diversification
Sector 
Size

Sector 
Correlation

DF k
Portfolio 

Diversification
Sector 
Size

Sector 
Correlation

P1 77.5% 75.6% 1.8% 0% 68.4% 75.6% 1.8% -9.1%
P2 66.9% 75.6% -8.7% 0% 60.7% 75.6% -8.7% -6.2%
P3 80.8% 75.6% 5.2% 0% 90.6% 75.6% 5.2% 9.8%
P4 53.3% 75.6% -22.3% 0% 70.7% 75.6% -22.3% 17.4%

Flat Sector Factor Correlation (Average) Implied Sector Factor Correlations

 

 
Table 11. Decomposition of marginal sector diversification factors.  

 

Next, the multi-factor economic capital model is used to compute the marginal capital 

contributions, and implied kQ ’s for each sector are then estimated (see the last two columns of 

Table 10). For the first two sectors, the capital contributions are lower than those with equal 

correlations. Hence, we obtain lower than average implied correlations of the factors to the rest of 
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the portfolio. The right half of Table 11 gives the decomposition of the sector diversification 

factors. Also, from the last column, we see that the first two sectors have negative sector 

correlation diversification components. The opposite is true for P3 and P4 (higher than average 

implied correlations and positive correlation component in the sector diversification factor).  

 

The fitted DF model can now be used to calculate, almost instantaneously, sensitivities or the 

capital contribution of new loans or trades, while allowing us also to explain the sources of risk 

and diversification. For example, bringing in a new small exposure to sector 3, would result in a 

marginal capital contribution of about 90bps per unit of exposure (this is the product a marginal 

sector diversification of 90.6%, and a SA capital contribution of 39.6% divided by 40, or about 

1% . The benefit of diversification is smaller given that the exposure is coming into a large, 

highly correlated sector, as explained earlier. Note that one can also use the model to compute the 

capital contributions of bigger transactions. 

   

6. Concluding Remarks 

We present a simple adjustment to the single-factor credit capital model, which recognizes the 

diversification obtained from a multi-factor credit setting. In contrast to full MC methods, there 

are benefits for seeking analytical or semi-analytical approximations for both for regulatory 

purposes as well as for credit portfolio decision management support tools. As a risk management 

tool, the model can be used to understand concentration risk, capital allocation and sensitivities, 

as well as to compute “real-time” marginal risk contributions for new deals or portfolios. 

 

The model is based on the concept of a diversification factor. We estimate this diversification 

factor for a family of multi-factor models, and show that it can be expressed as a function of two 

parameters that broadly capture the size concentration and the average cross-sector correlation.  

The model further supports an intuitive capital allocation methodology.  For this purpose we 

define marginal diversification factors at the obligor or sub-portfolio level, which account for 

their diversification contributions to the portfolio.  

 

While, as presented, the estimation of the diversification factor requires substantial numerical 

work, it can then be tabulated and used readily as a basis for regulatory rules or economic capital 

allocation. This results in a practical, simple and fast, method that can be also applied for stress 

testing and pre-deal analytics. For example, an institution can re-calibrate the model using an 

advanced credit portfolio framework on a periodic basis (for example monthly, weekly and even 
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daily) to adjust for changing market conditions and portfolio composition. The model can then be 

used in real time during the day to support decision making, origination and trading.  

 

We believe the diversification factor has potential to be applied to extend the Basel II regulatory 

framework to a general multi-factor setting, thus allowing for more accurate model of 

diversification for portfolios across various asset classes, sectors and regions, and in particular 

within mixed portfolios in developed and emerging economies. However, a few remarks are 

appropriate with respect to its calibration together with the regulatory parameters from Basel II. 

While we have used in Section 4 the Basel formulae for wholesale exposures in these exercises, 

we do not wish to imply that, as presented, the calibration exercises are generally appropriate for 

regulatory rules. An explicit assumption of the results is that the underlying credit model is given 

by equations (2) and (3). The calibration of Basel II parameters was done generally in the context 

of a one-factor model. Thus, one can argue that, if the sample used for calibration already covers 

the sectors in the portfolio, the asset correlations kρ  already account, at least partially, for cross-

sector diversification (see also e.g. Lopez 2004). To the degree that the original parameter 

calibration accounts for cross sector diversification, some scaling (up) for intra-sector correlations 

or (down) the diversification factor is required, in order to not incur in double counting.  

 

Finally, there are several enhancements of the model, which can be addressed in future research. 

These include:  

• The DF presented only covers systemic credit risk (as does the Basel II model) and, 

hence, is most useful for large portfolios. Its current strength is on capturing sector and 

geographical, but not name (or counterparty), concentrations. A useful extension of the 

model would also cover idiosyncratic risk (name concentrations) by applying 

mathematical tools such as the granularity adjustment technique.  

• There is potential for improving and generalizing the parameterization of the model. 

More parameters can be added or perhaps one can search for parameters that get better or 

more general fits (for example, the correlation parameter used in this paper is only one of 

several, which could have been chosen). However, in our opinion, this should not be done 

at the expense of too much complexity or loosing the intuitive interpretation of its 

parameters, results and capital allocation. 

• The final model can also be potentially enhanced through a parameterization with an 

explicit functional dependence of the DF on the CDI and correlation. 
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• We have formulated how risk concentrations work within this type of model. Further 

work is needed to explore their mathematical behaviour, their role in model calibration 

and application in practice. 

• Perhaps the biggest limitation of the model today is its reliance on costly numerical 

calibration. Ideally, we would like also a closed form approximation for the DF that is 

accurate and perhaps does not rely as much on numerical calibration. As such, for 

example, the known solution for Normal distributions can provide useful insights into the 

more general problem. 
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Appendix. Correlations of Market Indices in Developed and Emerging 

Markets. 

 

 

 

 


