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Abstract
We examine a simple bias correction of the realized varigR&# in the situation where observed prices

are contaminated with market microstructure noise. The &arection can greatly reduce the mean squared
error of theRV, and we show that the bias corrected estimator can be atit@encover important charac-
teristics of market microstructure noise. An empiricallgsia of the 30 stocks that comprise the Dow Jones
Industrial Average reveals that market microstructurs@ds time-dependent and correlated with increments
in the efficient price. These properties are found in bothdaation and quotation data. Both characteristics
have important implications for volatility estimation leason high-frequency data.
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1. Introduction

The realized varianc€RV) has become a popular empirical measure of volatility, andRNgields

a perfect estimate of volatility in the hypothetical situation where prices aereddin continuous
time and without measurement error. This result suggests th&\thevhich is a sum-of-squared
returns, should be based on returns that are sampled at the highsibtgprequency (tick-by-tick
data). However, in practice this leads to a well-known bias problem due tieet@icrostructure
noise, see e.g. Zhou (1996), Andreou & Ghysels (2002), and Oa20€2). The bias is particularly
evident fromvolatility signature plotsthat were introduced by Andersen, Bollerslev, Diebold &
Labys (2000), and the presence of noise has recently been docudnveitiieformal hypothesis
tests by Awartani, Corradi & Distaso (2004). So there is a trade-off detwbias and variance
when choosing the sampling frequency, and this is the reason that raterbgically sampled at

a moderate frequency, such as 5-minute sampling. An alternative way déelthe bias problem
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is to use bias correction techniques, such as the filtering techniques tleatisezl by Ebens (1999)
and Andersen, Bollerslev, Diebold & Ebens (2001) (moving average)fédted Bollen & Inder
(2002) (autoregressive filter). Other bias corrections were recentyduced by Zhang, Mykland
& Aiit-Sahalia (2002) (subsample approach) who consider time-indepemaisat and by Hansen
& Lunde (2003) (kernel-based approach) who allow for time-depecel@ the noise process.

In this paper, we analyze an estimator that was introduced in this contexhdyy @996)
We denote this estimator BY\Ac,, because it utilize the first-order autocorrelation to bias-correct
the RV. We make four contributions in this paper. First, we derive the propertidd\gf, in a
slightly more general setting than did Zhou (1996), as we allow for nosteanvolatility and non-
Gaussian market microstructure noise. Further, we benchRMgk to the standard measureRY
and show that the former is superior to the latter in terms of the mean squese(MS$E) criterion.
When their respective ‘optimal’ sampling frequencies are employed, wetaidtheR\ac, may
reduce the MSE by 50% or more, compared to the stari@d¥ré&econd, we evaluate the distortions
from neglecting the market microstructure noise. Interestingly we find tieadslimptotic results
of Barndorff-Nielsen & Shephard (2002) provide reasonably eteuconfidence intervals (for the
integrated variance) at low sampling frequencies, such as 20-minute sgmiglis finding is some-
what remarkably since Barndorff-Nielsen & Shephard (2002) detieir results in the absence of
market microstructure effects. However, at five-minute sampling we fintrine’ confidence inter-
val to be 7%-30% larger than the confidence interval that is based cssamad absence of noise.
Third, we propose a simple test of the hypothesis of ‘no time-dependertbe imoise process’.
The construction of this test exploits the bias corrected estimator’s ability vanéeatures of the
latent noise process. This test is interesting because the absence oéfiereddnce in the noise
process is commonly assumed when the effects of market microstructuesameisinalyzed, see
e.g. Corsi, Zumbach, Mler & Dacorogna (2001), Bandi & Russell (20833nd Zhang, Mykland
& Ait-Sahalia (2003). Fourth, we uncover some interesting features of trmaik@structure noise
in an empirical analysis of returns for the equities that comprise the Dovs Jodastrial Average
(DJIA). We find evidence that the noise process is both time-dependdraarelated with the re-
turns of the efficient price. This finding is robust to the choice of samplintdhoue(calendar-time

or tick-time) and the type of price data (transaction prices or quotation jpridé¢gese two find-

IThis estimator has previously been applied to daily return series by Frénbtvert & Stambaugh (1987).
2A later version of the working paper by Bandi and Russell (which aggkafter the first version of the present

paper) relax the iid assumption and allow for a mild form of time-deperelefite new version of their paper also argues

in favor of bias correcting the standard measurB¢f
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ings have important implications for sampling intraday returns at ultra higluémcjes, such as
every few ticks or every few seconds. The dependence betweeieprocess and the efficient
price process has important implications for some of the bias correctionsababeen used in the
literature.

The paper is organized as follows. We formulate assumptions and ptasengtical results
in Section 2 where we compaRV andR\c, and evaluate the accuracy of ‘no-noise’ confidence
intervals for the integrated variance. Section 3 contains our empiricalsasalyd presents a test for
time-independence in market microstructure noise. Section 4 contains a syamdaconcluding

remarks. All proofs are presented in the appendix.

2. Definitions and Theoretical Results

Let {p*(t)} be a latent log-price process in continuous time and pét)} be the observable log-
prices process, such that the measurement error (noise) procegsnidgu(t) = pt) — p*(t).

The noise process), may be due to market microstructure effects such as bid-ask boundes, bu
the discrepancy betweegmand p* can also be induced by the technique that is used to construct
p(t). For example,p is often constructed artificially from observed trades and quotes using the
previous-ticknethod or thdinear interpolationmethod?

We shall work under the following specification for the efficient pricecess,p*.

Assumption 1 The efficient price process satisfies*dp = o (t)dw(t), wherew(t) is a standard
Brownian motiong (t) is a time-varying (random) function that is independentvofand o2 (t) is

Lipschitz (almost surely).

In our analysis we shall condition on the volatility path?(t)}, because our object of interest

is theintegrated variance

b
|vzf o?(t)dt.

So we can treaiz?(t)} as deterministic even though the volatility path is considered to be random.
The Lipschitz condition is a smoothness condition that requirég&) — o2(t + 8)| < €8 for some
¢ and allt and§ (with probability one).

Next we formulate assumptions about the noise process, wheéreefers to stochastic inde-

pendence.

3 The former was proposed by Wasserfallen & Zimmermann (1985)tenthtter was used by Andersen & Bollerslev (1997). For
a discussion of the two, see Dacorogna, Gencayllé¥] Olsen & Pictet (2001, sec. 3.2.1).



Hansen, P. R. and A. Lunde: Realized Variance and MMS Noise

Assumption 2 The noise process satisfies:
(i) p* Lu;u(s) Lu()foralls #t; and Hu(t)] = Oforallt;
(i) w?= EJu(t)|? < oo forallt;

(iii) uq = Elu@®)|* < oo forall t.

Assumption 4. will be maintained throughout our analysis, wher¢a$ and (iii ) will only
be made when necessary. To simplify some of our subsequent expessadefine the “excess
kurtosis ratio”,k = u4/(3w*). Assumption 2 is clearly satisfied if is a Gaussian ‘white noise’
processu(t) ~ N(0, w?), in which caser = 1.

The existence of a noise process,that satisfies Assumption 2, follows directly from Kol-
mogorov’s existence theorem, see Billingsley (1995, chapter 7). It ifwbile to note that ‘white
noise processes in continuous time’ are very erratic processest,|thiaguadratic variation of an
white noise process is unbounded (as isrtitie variation for any other integer). So the ‘realized
variance’ of an white process diverges to infinity as the sampling frexyusrnincreased. This is in
stark contrast to the situation for Brownian motion type processes thafindee -tic variation for
r > 2, see Barndorff-Nielsen & Shephard (2003).

2.1. Sampling Scheme

We patrtition the intervald, b] into m subintervals, and the number of subintervaisplays a central
role in our analysis. For example we shall derive asymptotic distributionsaritgies, asn — oo,
and discuss optimal choices for. For a fixedm theith subinterval is given byi[_1 m, ti.m], where
a=tom <tim<--- <tmm=Db. The length of theth subinterval is given by; m = tim — ti—1.m

and we assume that Sup ., 8i.m = O(%), such that the length of each subinterval shrinks to zero

,,,,,

asm increases. Thimtraday returnsare now defined by,

Yim= P (tim) — P (ti—1m), i=1....m,

and the increments ip andu are defined similarly and denoted By, ande , respectively. Note
that theobserved intraday returndecomposes intg m = y;',, + & m. Next we define the integrated
variance over each of the subintervals,
ti,m
o E/t a?(s)ds, i=1,...,m,

i—1,m

and note that vay; ) = E(y;2) = o2

i.m*
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The realized varianceof p* is defined byRV(™ = >, y*2 and it follows thatRV{™ is
consistent for théV, asm — oo, see e.g. Meddahi (2002). An asymptotic distribution theory of
realized variance (in relation to integrated variance) is established in &dfriNlelsen & Shephard
(2002). WhileRVI™ is an ideal estimator — it is not a feasible estimator — becauise latent.
The realized variance gf, which is given byRV™ = >~ y? is observable but suffers from a
well-known bias problem and is inconsistent for thfe

The literature has been concerned with different forms of sampling schehe special case
wheret; m, i = 1, ..., mare equidistant in time, i.e5; , = (b —a)/m for all i, is referred to as
calendar time samplingCTS). The widely used exchange rates data from Olsen and Associates
see Miller, Dacorogna, Olsen, Pictet, Schwarz & Morgenegg (1990) anaistant in time, and
five-minute samplingé; m = 5min) has commonly been used in this context. The case where
the sampling timestym, . .., tmm, are such thabﬁm = IV/mforalli = 1,...,m, is referred
to asbusiness time samplin@®TS), see Oomen (200% Whereas, the case whettg, refers to
the time of a transaction/quotation, will be referred tdiels time samplindTTS). An example of
TTS is whent; m, i = 1,...,n, are chosen to be the time of every fifth transaction, say. While
tim, I = 0,...,m, are observable under CTS and TTS, they are latent under BTS, deetiza
sampling times are defined from the unobserved volatility path. Yet empirisaltseby Andersen
& Bollerslev (1997) and Curci & Corsi (2004) suggest that BTS campproximated by TTS. This
feature is nicely captured in the framework of Oomen (2)Pwhere the (random) tick times are
generated with an intensity that is directly related to a quantity that corresgond(t) in the
present context. Under CTS we will sometimes wRé*®? wherex seconds is the period in
time spanned by each of the intraday returns ¢;g, = x seconds Similarly, we write RV icks
under TTS when each intraday return spgitisks (transactions or quotations).

The bias-variance properties of tR&/™ have been analyzed by Bandi & Russell (2003) and
Zhang et al. (2003) under an white noise assumption. The following lemma suzesihese results

in our notation, where we use>’ to denote convergence in distribution.

Lemma 1 Conditional on{o?(s)} and given Assumptions 1 and 2.i-ii it holds tha{Rv/™) =

IV 4+ 2mw?; if Assumption 2.iii also holds, then

m m
varRV™) = k120*'m + 80* > "of, — (6 — 20* +2) of
i=1 i=1

and

RVM — 2me? m RvV™
=V A ———1)—d>N(0,1), as m— oo.

Vel120m  V 3k 2me?
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In the absence of market microstructure noise and under@%S- 0 ands; m, = (b — a)/m),

we obtain a result of Barndorff-Nielsen & Shephard (2002), that
m b
varRV™) =23 ot = £ [ ot@ds o),
i=1 a

Where]: o4(s)dsis known as théntegrated quarticitythat was introduced by Barndorff-Nielsen &
Shephard (2002).

Next, we consider the estimator of Zhou (1996) that is given by

m m m
R =Yy + > YimYicam+ > YimYisim. )
i=1 i=1

i=1
This estimator incorporates the empirical first-order autocorrelation, varabunts to a bias cor-
rection that ‘works’ the same way that robust covariance estimators, asichat of Newey &
West (1987), achieve their consistency. Note that (1) involugs and ym1.m that are intra-
day returns outside the intervad,[b]. We choose this formulation because it simplifies several
expressions (by avoidingn/(m — 1) terms). If these two intraday returns are unavailable, one
could simply use the estimatdr"," y2, + S, VimYi—am + Y ig YimYisim that estimates
o™ o(s)ds = IV + O(%).

In the following lemma we establish results @M(Q; that are similar to those fdRV(™ in

Lemma 1.

Lemma 2 Conditional on{o2(s)} and given Assumptions 1 and 2.i it holds thaRE4") = IV if

Assumption 2.ii also holds then

m m
var(RVY) = 8w'm+ 802 Y o2 — 60* +6 ot +rm.

i—1 i—1
where f, = O(m~2) under CTS and BTS, and

RYe, ~ IV N(0, 1)
s T 4 1), as m— oo.
V8w*m

An important result of Lemma 2 is tha\ﬁg’l) is unbiased for thé&v at any sampling frequency,
m, and that this result is established under relatively weak assumptions thigonbise process.
Also note that Lemma 2 requires weaker assumptions that those nee@d"tbm Lemma 1. This
is achieved because the expressiorﬁkﬂf can be rewritten such that it does not involve squared

noise terms, i m]%, i = 1,...,m, as doRV'™, whereu; , = u(t ). A somewhat remarkable

result of Lemma 2 is that the bias corrected estim&ttﬁgl), has a smaller asymptotic variance than

6
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the unadjusted estimatdRV!™. Usually a bias correction is accompanied by a larger asymptotic
variance Also note that the asymptotic results of Lemma 2 is more useful than that of Lemima 1 (
terms of estimatindV), because the result of Lemma 1 does not involve the object of intdévest,
but only shed light on aspects of the noise process. However, it is alswtempto note that the
asymptotic result of Lemma 2 does not suggest méf;l) should be based on intraday returns that
are sampled at the highest possible frequency, since the asymptoticceaidancreasing im! In
other words: WhiIeR\é@f is centered about the object of interd$t, it is unlikely to be close t¢V
asm — oo.

With CTS ¢i.m = (b — a)/m) our expression for the variance is approximately given by

b b

varR] ~ 8a*m + 80° /

1
4 -
A o”(s)ds—.

a?(s) — 6w + 6/

a

This shows that the variance BM@l) is about three times larger than thatR¥™ in the absence
of market microstructure noisg”> = 0), for a givenm. This shortcoming can be compensated
for by using a sampling frequency fcﬁt\é@lﬁ that is three times higher than that R¥/™ (i.e.
m; = 3mg). Our empirical results suggest tnaxgg‘; should be based on intraday returns that are
sampled ten times more frequently than thoseR&™, such that this component of the total
variance is reduced.

Next, we comparR\/A(g‘l) to RV(™ in terms of their mean square error (MSE) and their respective

optimal sampling frequencies for a special case that illustrates key featitiee two estimators.

Corollary 3 Definer = w?/IV, suppose that = 1, and let b, ..., tmm be such that? =

IV/m (BTS. The mean squared errors are giverfby
MSERV™) = IV 4)°m* +12°m+ 8 — 4>+ 2 ], 2)
MSERVY) = IV 8A°M+ 8L —61° + 2— 2], (3)

The optimal sampling frequencies for ¥ and R\@ are given implicitly as the real (positive)

solutions to4x?m? + 612m? — 1 = 0 and4A?’m® — 3m + 2 = 0, respectively.

We denote the optimal sampling frequenciesRM¥™ and R\ﬁg? by m§ andmyj, respectively,
and these are approximately given o, ~ (21)~%3 andm; ~ V3(21)7L. In our empirical analysis

we find 2~ to be larger than 1000 for most equities, such that;/mj ~ 3%/22-3(~1)1/3 > 10,

4Equation (3) was derived in Zhou (1996) under the assumption thatoise process is Gaussian. However, his

expression contains a minor error as62” is incorrectly written as “-412” (using our notation).
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and this shows that; is several times larger tham{ in practice. In other words, the optimal
R\A‘E’i requires a more frequent sampling than does the ‘optiR¥l'This is quite intuitive, because
R\A‘Qf can utilize more information in the data without being affected by a severe Nesirally,
when using TTS, the number of intraday returms, cannot exceed the total number of transac-
tions/quotations, so in practice it might not be possible to sample as frequsnplescribed by
m.

Although Corollary 3 is based on somewhat restrictive assumptions (such,a= IV/m) it
nevertheless captures the salient features of this problem, and the Mg&t s (in relation to the
noise process) are characterized by a single paramet8g Corollary 3 provide a very attractive
framework for comparingRV™ andR\ﬁE”l), and for evaluating how sensitive these estimators are to

market microstructure noise.
[FIGURE 1 ABOUT HERE]

From Corollary 3 we note that the root mean squared errors (RMSERYSY and R\{Q are

proportional to théV and given byy (A, mIV andy (A, m)IV, respectively, where

Yo(A, M) \/4/\2m2 +12°m+ 81 —4r% + 2 ,

yi(m) = \/ 81°m+ 8. — 612+ 8 — 2

m2*

In Figure 1 we have plotted,(x, m) andy ; (1, m) using two empirical estimates &f The estimates
are based on high-frequency stock returns of AA:Alcoa Inc. (uppeels) and Microsoft: MSFT
(lower panels). The details regarding the estimatioh i deferred to the empirical section of this
paper. The left panels prese:;n(g(i, m) and yl(i, m), where the thec-axis isé;m = (b —a)/m
in units of seconds. For both equities, we note thatFthﬂl) dominate theRVI™ except at the
very lowest frequencies. The minimum pg(i, m) andy (i, m) identify their respective optimal
sampling frequenciesng andmj. For the AA returns we find the optimal sampling frequencies to
bemg a4 = 77 andmj , , = 1190 and the theoretical reduction of the MSE is584 The curvature
of y (A, m) andy, (A, m) in the neighborhood afn; andm, respectively, show th®\4¢, is less
sensitive to the choice @ than isRV(™.

The right panels of Figure 1 display the relative MSER);{E”I to that of (the optimalRV(™
and the relative MSE oRV(™ to that of (the optimaIRVA(?f). These panels show that R4’

continue to dominate the ‘optimaRV(™ for a wide ranges of frequencies, and not just in a small

8
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neighborhood of the optimal valugy;. This robustness dR\ic, is quite useful in practice where
A and (hencen; are not known with certainty, because the result shows that a redgq@mabise

estimate oft (and hencen;) will lead to anR\Wic, that dominates the ‘optimaRV.

[FIGURE 2 ABOUT HERE]

A second very interesting aspect that can be analyzed from the ref@ralary 3, is the
accuracy of theoretical results that are derived under the assumpéibh ta 0 (no market mi-
crostructure noise). For example, the accuracy of a confidenceahferdV, which is based on
the asymptotic results of Barndorff-Nielsen & Shephard (2002), willedejponi andm, and the
expressions of Corollary 3 provide a simple way to quantify the accurbisyah confidence in-
tervals. Figure 2 provide valuable information about this question. Thepéefels of Figure 2
present the RMSEs d®®V™ andRV{, using both an estimate > 0 (the case with noise) and
A = 0 (the case without noise). For small valuesnofwe see thatyo(i, m) =~ y,(0, m) and
yl(i, m) ~ y,(0, m), whereas the effects of market microstructure noise are pronoundbd at
higher sampling frequencies. The right panels of Figure 2 quantify ticesgiancy between the two
‘types’ of confidence intervals (aboBRV™) as a function of the sampling frequency. These plots
present 100} (A, M) — (0, m)] /¥ (0, m) and 100§, (A, m) — ¥,(0, m)]/y1(0, m) as a function
of m. So the former reveals the percentage widening of a confidence intepvais faboutRV™)
due to market microstructure noise, and the second line shows the cordésyp widening of the
confidence interval that is constructed abaﬁvﬁgl). The vertical lines in the right panels mark the
sampling frequency that corresponds to five-minute sampling under @itShase show that the
‘actual’ confidence interval (based &™) is 31.47% larger than the ‘no-noise’ confidence inter-
val for AA, whereas the enlargement i67% for MSFT. At 20-minute sampling the discrepancy
is less than a couple of percent, so in this case the sized distortion fromdigivigus to market
microstructure noise is quite small. The corresponding increases in the I@I\/I%ﬁg? are 388%
and 144%, respectively. So a ‘no-noise’ confidence interval (abi® ml)) could, in principle, be
used as a reasonable approximation at moderate sampling frequencibst{draalternative is not

available).

3. Empirical Analysis

We analyze stock returns for the 30 equities of the Dow Jones Industesade (DJIA). The sample
period spans three years, from January 3, 2000 to December 3,,\20igh delivers a total of 750

9
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trading days. The data are transaction prices and quotations from thextlvanges NYSE and
NASDAQ, and all data were extracted from the Trade and Quote (TA@pdae.

The raw data were filtered for outliers and we discarded transactionsi®tite period from
9:30am to 4:00pm, and days with less than five hours of trading were renfimradhe sample,
which reduced the sample to the number of days reported in the last colurablefIl The average
number of transactions/quotations per day are labelled (All) in Table 1. Qalysis of quotation
data is based on mid-quotes (average of bid and ask prices). When saimptimendar time we
used the previous-tick method to construct intraday returns, and wineplisg in tick-time we
remove price observations that did not result in a ‘price chahgehe average number of ‘new’
transaction/quotation prices per day is labeligd p;, # 0) in Table 1. TheRVs are calculated for
the hours that the market is open, approximately 390 minutes per day (65fbomost days), and
we denote th&Vs on dayt, by RV{™ andRW( . t = 1, ..., n. We present result for all 30 equities
in our tables, whereas the figures present results for two equities: KlcodAA) and Microsoft
(MSFT), that represent equities of the DJIA with low and high trading &ies; respectively. The

corresponding figures for the other 28 DJIA equities are available tguprest.

[TABLE 1 ABOUT HERE: Data Description]

3.1. Estimation of Market Microstructure Noise Parameters

From Lemmas 1 and 2 it follows thatr»? = E[RV™ — R\@], wherem is arbitrary. Under the

assumption thab? is constant across days, it can be estimated by
1
A2 1 Z me) M)
v t=1 Z—mt(Rv¥ B RVA(CLI)’ )

wherem; andm, need not be constant across days. It the special case where th&esquescies
are used for all days, (4) simplifies & = L RV™ — ﬁég)), whereRV™ = n-131  RV™
andRY2 = n L S0, R,

In order to obtain a precise estimatesfit is important thaR\/@L)t is indeed unbiased fdW .
For this reason, we calculaB\c, ; using tick-time sampling, where each of the intraday returns

spans 60 transactions (or quotations for the mid-quote data). mhusll (approximately) equal

5The same price is often observed in several consecutive transaatitatiqns, because a large trade is divided into
smaller transactions (transaction data) and because the market nsaksrasnew quote with a different ‘depth’ while the
bid and ask prices are unchanged (quotation data). This censoriagaeffectRV but is important foRWc, , because

it effectively removes all the zero-intraday returns which influencetitecovariances of intraday returns.

10
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the number of transactions (or quotations) on tdawided by 60 The higher the frequency that is
used forRVI™, the more dominating is the bias term, so we choose a much higher frequency in this
case. Specifically we use one-tick sampling, such that our results @e baRV\™ = RV
andRVY), = RYL1.

Under our assumptions it follows that plim ., 5 (RV™ — RUL) = plim,,_, . sRV™, and
A RV™ is used (as a consistent estimatowsf in Zhang et al. (2003) to bias correct their subsam-
ple estimator. In our empirical analysis we do not fmqu‘; to be negligible, even when sampling
at the highest possible frequency, 1-tick sampling. We observed tastiatdifference between the
two estimatesz: (RV™ — RUY) and 2 RV(™, so even though both are consistentddr the latter
is quite biased for at the sampling frequenay,that one can use in practice. So we argue that it is
important to incorporat®\ic,, or some other unbiased estimatondéf whenever? is estimated
in this way.

SinceR( is unbiased foilV, it follows thatlV = n~1 Y| R\ estimates the average

daily IV over the sample =1, ..., n. So we define
A= &)Z/W ,

which is an estimator of ‘average noise’ divided by ‘average integraagdnce’. If bothw? andIV

are constant across days, such tha the same for all days, thenis consistent fos. under mild
regularity conditions. In practice, is unlikely to be constant across days,isshould be viewed
as a reasonable approximationgffor a typical trading day. Fortunately, Figure 1 showed that
R\/@f is relatively insensitive to small deviations frami, such that ami; based on a reasonable

approximation for., leads to a more accurate estimator tRAA™ (for anym).
[TABLE 2 ABOUT HERE]

Table 2 contains empirical results for all 30 equities using both transactgwotation data.
The are several interesting observations to be made from Table 2. Ftnatisaction data we
note thath is typically found to be smaller than1%, and the theoretical reduction of the MSE,
100[y3 (A, mg) — ¥ 2(h, mH]/¥3(%, mg), is always found to be 50% or more. For example for Alcoa
Inc. we find that3 , = 0.4217% and.aa = 0.4217%/5.797 = 0.0727%, that leads to the optimal
sampling frequenciesni = 77 andm; = 1190. For a typical trading day that is 6.5 hours long
this corresponds to intraday returns that (on average) spans 5 mindt@8 gaeconds, respectively.
Bandi & Russell (2003) and Oomen (205)2004) report ‘optimal’ sampling frequencies fRV™

11
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that are similar to our estimates wf§. By plugging these numbers into the formulae of Corollary
3 we find the reduction of the MSE (from usirﬁg\/g{) rather tharRV(™) to be 645%, which
suggests tha‘R\A(?f) is about three time more efficient th&W™’, provided that Assumptions 1
and 2 hold.

The noise-to-signal ratid,, is likely to differ across days, in which case the optimal sampling
frequenciesmi andmj, will also differ across days. So our estimates above should be viewed as
approximations for ‘daily average values’, in the sensetiiat= 148 andm; = 3139 appear to be
a sensible sampling frequencies to use for the MSFT transaction data.

For the quotation data all our estimates«gfare negative, a phenomenon that also occurs for
transaction data for three equities. A negative estimate occurs when thie sammge oRV* 10
is smaller than the sample averageR)ﬁg?“C"S. This is obviously in conflict with the results of
Lemmas 1 and 2 that dictate the population differerfegRV* ik — R\Ag?“c"s)], to be positive.

The expected difference iss2 times a number that is proportional to the average number of trans-
actions/quotations per day. One explanation for obserz@i%g< 0 is thatw? ~ 0, such that the
‘wrong’ sign simply occurs by chance. However, this is highly improbaklealise all estimates of

w? (and not just about half of them) are found to be negative for the quotdtita. Our subsequent

analysis will also show that the negative estimates are caused by a violafisswuhption 2.

3.2. A Hausman-Type Test for Time-Independence of the Noise Process

From Lemma 2 we know thafﬁ\ﬁ{:“; is unbiased folV at any frequency under Assumption.2.
This followed from the fact that the innovations of the noise procegss, have a non-zero first-
order autocovariance whereas higher-order autocovariancedl aexo. This property is inherited

by the observed intraday returng.,, given our assumptions about the efficient price process. The
estimator,R\ﬁgl), is unbiased because it properly corrects for the first-order auglaton iny; m.
However, R\ﬁgl) may be biased if higher-order autocovariances are non-zero, waatdve the
case (for largen) if the noise processi(t), was dependent across time (a violation of Assumption
2i.)

[FIGURE 3 ABOUT HERE]

An graphical way to investigate the bias propertieRdftype estimators is through the so-

called volatility signature plots of Andersen et al. (2000). In Figure 3 veségmt volatility signature
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plots for AA and MSFT using both CTS and TTS, and based on both traosatata and quotation
data. The upper four panels of Figure 3 are based on CTS and theséagronounced bias when
R\A‘Qf is based on intraday returns that are sampled more frequently than évegc8nds. The
main explanation for this is that CTS will sample the same price multiple times whisnarge,
which induces (artificial) autocorrelation in intraday returns. Thus, whigaday returns are based
on CTS, itis necessary to incorporate higher-order autocovariafgges, whenm becomes large,
see Hansen & Lunde (2004). The lower four plots are signature plo¥sTi® and these also reveal
a pronounced bias iR\Aékas) at the highest frequencies. Yet, a comparison of the CTS and TTS
signature plots suggests that TTS dominates CTS, as it allows from a mqueritesampling of
intraday returns. This observation is in line with the results of Oomen (Z@®0D4), who showed
this to be the case in a jump-process framework.

Another very important result of Figure 3, is that the volatility signature plaipsl(rather than
increases) as the sampling frequency incregaes; ,, — 0). This holds for both CTS and TTS,
and bothRV(™ andR\A@l). This phenomenon was first documented by Hansen & Lunde (2004), and
their theoretical results show that the negative bid®\6f” cannot be explained by time-dependence
in the noise process alone. As easy way to see this is to note that the quealration of p is the
sum of the quadratic variations @f andu whenevemu L p*. So the bias of (a nontrivial) market
microstructure noise is always positiveuf L p* holds. However, the volatility signature plots
reveal a negative bias, and this strongly suggest that the innovations foite process n, are
negatively correlated with the true returys, , see Hansen & Lunde (2004, theorem 2).

Because the unbiasnessR)\‘Ag) crucially relies on Assumption 2.we consider tests of the

hypothesis,
Ho:u Ll p* and u(s) Lu(t) foralls#t.

As is almost evident from Figure 3, there is an overwhelming empirical eg@againstHy. So
there is not need for a very powerful (or an optimal) test in order toladedhatHy is false. Instead
we apply significance tests that can identify the reasonsHhaoes not hold. For this purpose we
employ simplet-tests that have power against particular alternatives, and this will helpawver
the properties of market microstructure noise, and allow us to charactieeizpecific violation of
Assumption 4. that is found in these data.

For the construction of the tests we observe ng‘f is unbiased for thév for anym, under

the null hypothesis, such thRM{ = IV + error™ whereE (error™) = 0. It follows that
d =RUL, — RUL, =error{™ —error{™,  m #m,

13
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is the difference between two measurement errors, each having ekpedte zero, such that
E[d] = 0. The variance of the sample average= n=1) [, d; (normalized by,/n) is con-
sistently estimated b)ﬁ—l Z[‘Zl(dt — d)?, because the measurements errors (and hénazan be
assumed to be uncorrelated across days. Thus a simple telgt oan be based on the following

t-statistic,

tmm = +/Nd /\/n—ll Sr(d —d)2,

and under the null hypothesis we have thaty 4 N (0, 1), asn — oo, under standard regularity
conditions that are quite plausible to hold in this context.
The power of the test that compatgsm, to a critical value of a standard Gaussian distribution,

will depend onm andm. This can be seen from the decompositiorRQ{g"f into:

m m
R\égl) = Zyi,m(yi—l,m + Yi.m + yi+1,m) = Z({?/)r/n + {.L“rjn + §|yl;1~| s
i=1

i=1

where
S = YO m Y t Yam)
¢im = Uim—Ui—1m)(Uit1m — Ui—2,m)
Ym = YimUisam — Uiam) + (Uim = Uimtm) (Vg i+ Yo + Yy m)-

The expected value of the first termdﬁm, whereas the last two terms both have expected value
zero under the null hypothesis. The decomposition also shows that aelation inu(t) may
causeE(¢;') # 0 and correlation between increments in the efficient price and the noisessto
can cause the expected value of the third term to be non-ﬁg@%) # 0. So we see that the
test that is based aip, m Will have power against alternatives for which the biaﬁ?@ﬁg‘f differs

from that ofR\ﬁg‘l), So the test will not have power against alternatives where both estimagors a
unbiased. This will occur if the time-dependence iand the correlation betweerandy;, is short
lived. For example, if the time-dependence in the noise process is lessrthanioute, then it is
easy to verify thaR\é\(g"; is unbiased i corresponds to intraday returns that each spans a period of

time that is one minute or more. A similar example can be given for the case with TTS.

[TABLE 3 ABOUT HERE:]

[TABLE 4 ABOUT HERE:]
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Tables 3 and 4 contaityy, s -Statistics for pairs ofm, m). We chosah = 60 in most cases,
becausd?\ﬁg?“c"s is unlikely to be biased, such that a rejectiontyf based ortm s must be
attributed toR\/A(g‘f being biased (fom < m). Thus our test is a Hausman-type test, because the
sample averages ®Vie. 1 andRV ™ are both consistent fdl under the null hypothesis,
whereas only the latter is consistent under a particular class of altesiaiivem Tables 3 and 4
we see that the pairs, (25,60), (30,60) and (60,180), result in verydjections (some rejections
are to be expected by pure chance). So there is little evidenc&\{@?ks) is biased forx > 25,
however at the high frequencies, where< 10, we see a large number of rejections. This shows
that the implications oHy (Assumption 4.) do not hold when sampling at a high frequency for both
transaction and quotation.

In Figure 4, we present (signature) plots of thgso1ickg-Statistics for two equities: AA and
MSFT. These plots are representative for most of the 30 equities, Whetgis typically positive
at the medium-high frequencies, wherégss, < O at the ultra-high frequencies. One possible
explanation for this phenomenon is that autocorrelatiandreates the upwards bias at the medium-
high frequencies, while a short-lived negative correlation betwesmdy* results in a negative bias
that dominates the other effect at the ultra-high frequencies. Roundiogs enay explain part
of these findings, but further analysis of this aspect, which is beyonddbge of this paper, is

necessary to verify this explanation.

[FIGURE 4 ABOUT HERE]

4. Summary and Concluding Remarks

We have analyzed the properties of market microstructure noise and ienoéwn empirical mea-
sures of volatility. Our comparison of the bias corrected estimﬁt\ﬁ’gf, of Zhou (1996) to the
standard measure of realized variance revealed a substantial impravarties precision, as the
theoretical reduction of the MSE is about 50%-75%. These gains whievad with a simple bias
correction that incorporates the first-order autocovariance, ariticad improvements are possible
with more sophisticated corrections of the realized variance. For examelsulisample estimator

of Zhang et al. (2003) is an estimator that has better asymptotic propertieR\&@l) under As-
sumptions 1 and 2. YeR\Ag’l) has some attractive properties that are useful for studying market

microstructure noise. For example, if there is a short-lived time-depeaderibe noise process,
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then R\é@f is biased ifm is above a certain threshold, but remains unbiased for smédthen the
intraday returns span a period of time that is longer than the time-depenidaheenoise process).

We have also evaluation of the accuracy of distributional results thataegllon an assumption
that there is no market microstructure noise. We showed that a ‘no-rois&tience interval based
on the results of Barndorff-Nielsen & Shephard (2002) provide aaeable accurate approxima-
tion when intraday returns are sampled at low frequencies, such as 2@ersampling. However,
when intraday returns are sampled at higher frequencies the ‘no-ap@@ximation are likely to
be quite poor. The analogous ‘no-noise’ confidence interval am@ yields a more accurate
approximation than that &®V(™, but both are very misleading when intraday returns are sampled
at high frequencies.

More importantly. Our empirical analysis uncovered several charaitsrg market microstruc-
ture noise, where the most notably features are: (1) the noise prodess-dependent and (2) the
noise process is correlated with the innovations in the efficient price ggsocEhese results were
established for both transaction data and quotation data and were fouold fohintraday returns
that are based on both calendar-time sampling and tick-time sampling.

Several results in the existing literature that analyze volatility estimation fromfrégjuency
data that are contaminated with market microstructure noise, including ouetitab results in
Section 2, have assumed that the noise process is independent ofdileatgfiiice and uncorrelated
in time. Our empirical results suggest that the implications of these assumptiortsohdaiat least
approximately) when intraday returns are sampled at relatively low frexge®s So the conclusions
of these papers may hold as long as intraday returns are not sampled-asprently than every 15
ticks, say.

Our empirical results have shown that the sampling of intraday returnsahidtn frequencies,
such as every few ticks, necessitate more general assumptions abdeptraence structure of
market microstructure noise. Some results are established in Hansen & (20@4) who use a
general specification for the noise process that can accommodate beshafygependencies that
we found to be empirically relevant. We believe that interesting future relseapics include: (1)
deriving estimators that are robust to the various forms of depende(@jasstudy of the robustness
of existing estimators (to these forms of dependencies), such as the nawd@rage based estimator
of Ebens (1999) and Andersen et al. (2001), and the subsampld bssmator of Zhang et al.

(2003). We leave this for future research.
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Appendix of Proofs

As stated earlier, we condition c{nz(t)} in our analysis, thus without loss of generality we treatt) as a
deterministic function in our derivations.

Proof of Lemma 1. The bias follows directly from the decompositigh,, = yi5, + €, + 2y ,&.m. since
E(eﬁm) = EUim — Ui_1m)? = E(uﬁm) + E(uiz—l,m) — 2E(UimUi_1.m) = 20w?, where we have used
Assumption 2-ii. Similarly, we see that

m m m
var(RV™) = var(y " yig) +vary el ) +4var) | yime.m)

i=1 i=1 i=1

m
Yilyvarya) =230 o, where the last equality follows from the Gaussian asstwmpfror the sec-

ond sum we find

because the three sums are uncorrelated. The first sumésuahcorrelated terms such thatey” ; yi”jz )=

EE') EUim— Ui—1m)* = EU, + U?_g 1 — 2Ui mUi—1.m)?

= B}, +ut 40 u? o F2u? u? )+ 0= 2u, + 6w’

i,m i—1,m imYi—1m imYi—1m oz )
E€nei1m) = EUim-—U_1m)?Uisim— Uim)?

= EUly+UZ 1 — 20 mUi—1m) (U7, + UP 1y — 2Ui 41 mUim)

= EUln+ U2, U2 0+ UP) +0= g+ 30,
where we have used Assumptiori-Bii. Thus vate?,) = 24 + 60* — [E(€7)]? =2u, + 20w and
COM(E? ), €71 ) = s — . Since cove? , &2y, ) = O for || > 2 it follows that

m m m
var(X:i . € = Zi ) vare? ) + Ziij;jl COVEy, €41 1)

MQ2ug + 20%) + 20 — 1) (g — ) = My — 2(us — o).

The last sum involves uncorrelated terms such that

m m m
vard e mYim) = > _var@ my,) = 20"y ol
= i—1 i—1
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By the substitutiorBx = 1, we obtain the expression for the variance. The asymptotimality is proven
by Zhang et al. (2003) with an argument that is similar to thatuse forR\;@l) in our proof of Lemma 2, and
using that 23 o | + 207 Y1 07— 40? = O(1). W

Proof of Lemma 2. First we note thaR\A(g?: >, Yim + Uim + Vim + Wi m, where

Yim = YimOlomt Yim+ Yisam)

Um = (Uim—U-1m)Uit1m— Ui—2m),

Vim = )/ffm(ui+l,m —Ui—2.m),

Wim = (Uim-— Ui—l,m)(yi*_l,m + yifm + yi*—i-l,m)v

sinceyim(Yi—1m+ ¥Yim+ Yitim) = (yffm + Uim— Uifl,m)(yi*_l,m + y|*m + yi*+1,m +Uit1m — Ui—2,m)
=Yi m+Ui.m+ Vi m+W m. Thus the properties 6{\/@) are given from those ofi m, Ui m, Vi.m, andW m.
Given Assumptions 1 andi2.it follows directly thatE(Y; m) = crl m» @NdEWUim) = E(Vim) = E(Wim) =
0, which shows thaE[R\{A(g?] =Y, o2, Note thatE (U; i) consists of term& (U; mUjm) wherei # |

so Assumption 2.suffices to establish that the expected value is zero. Giesudptions 1 and.2ii, the
variance ofR\A(g"l) is given by

m
varRVE] = varl} " Yim + Uim + Vim +Wiml = (D) + ) + (3 + @) + (5),

i=1
where(1) = var(y 3 Yim), (2) = var(_iLy Uim), () = var(y Ly Vim), (4) = var(y Ly Wom), (5) =
2covY " Vim, 204 Wi m), since all other sums are uncorrelated. Next, we derive theesgions of each
of these five terms.
LYim =Y 1mt ¥m+ Y 1m and given Assumption 1 it follows thﬁ[yI myJ m] = o,z
i # j, andE[y? my]kzm] = E[y*4] =30} fori = j, such that

f for

m m

a4 2 2 2 2 2 1254 2 2 2 2
var(Yim) =30+ 0{ moi_1m+0imoiiim — [0iml® =207+ ofmoi_1m+ 0 moiiam:

The first-order autocorrelation of m is

E[YImYI +1,m] = E[yi*,m(yi*—l,m + yi*,m + yi*+1,m)yi*+l,m(yijjm + yi*+1,m + yi*+2,m)]
HWMWm+ﬁHwﬁ&mﬁm+ﬁ&whﬂ

2
ZE[y| m |+1 ml = 20| mOi+1,m>

such that co®i m, Yi+1.m) _ol "m0 |2+1 m» Whereas coWi m, Yi+hm) = O for |h| > 2. Thus
m m—1
@ = Z(Z‘Tlm"’alm i— 1m+‘7|m |+1m)+ZU|m Oi- 1m+20|m Oitim
i=1 i=2 i=1
m m m
_ 4 2 2 2 2 2 2 2 2
= 2X:Ui,m"'ZX:Ui,mUi—l,m"'ZZ:‘Ti,mng,m_U:L,mgo,m_‘Tm,mam-i-l,m
i=1 i=1 i=1
m m m
4 2 2 2 2 2 2
= GZO'i,m_Zzai,m(gi,m_ai—l,m)+220i,m(ai+l,m_ai,m)
i i— i—1
2 2 2 2

“01mo%0om ~ O mmPm+1m
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m—1

m m
4 2 2 2 2 2 2
= 6X:Gi,m - 2Z‘Ti,m(ai,m —0i_1m +2 Z oim@am =i m)
i=1 i=2 i=1

2 2 2 2 2 2 2 2 2 2
0 1mlom =~ O mmPom+im — 2Ul,m(al,m - UO,m) + 2Gm,m(am—o-l,m - Um,m)

m m—-1
_ 4 2 2 \2 4 4 2 2 2 2
= 62 Oim—2 Z(OiJrl,m —0im) =20 m+omm +0Tmoom T CmmomeLm
i—1 i—1

2.Uim = (Uim— Ui—1.m)(Uiy1m — Ui—2.m) and fromE(UZ ) = E(Uim — Ui—1.m)?E (Ui y1.m — Ui —2.m)? it
follows that vatUi m) = 40*. The first and second order autocovariance are given by

EWUimUitim) = E[WUim— Ui—1m)Uit1m — Ui—2m)Ui+1,m — Ui, m) (Uit2,m — Ui—1,m)]
= E[U_1mUisimUisimUi-1m] +0=0%  and
EWUimUitom = E[(Ui,m — Ui—1,m)(Uit1,m — Ui—2m) (Uit2m — Ui+1,m) (Ui+3m — Ui,m)]

4
= E[Ui mUi+1mUit1,mUim] + 0=,

whereasE (Ui mUi1n.m) = O for |h| > 3. Thus,(2) = mdw? + 2(m — Dw? + 2(M — 2)w* = 8w’*m — 60”.
3. Vim = Yi'm(Ui+1m — Ui—2.m) such that vaiv2,) = 02, 202 and E[Vi mVi +nm] = O for allh # 0. Thus
) =var} ", Vim) = 20230, Uiz,m'

4 Wim = Uim = Ui—1m) (V1 4 Yim + Vi m) such that valW? ) = 20?02 | | +0f 1 + 0P ).
The first order autocovariance equals

COV(WE m, Wig1.m) = E[—UZ (Vi + V2 ] = 0?02 + 01 m),

while couW; m, Wirh.m) = O for |h| > 2. Thus

m m m-1
(4) = Z[zwz(aiz—l,m =+ O'ﬁm + ai2+l,m) — Z a)z(o'ﬁm —+ Gizfl,m) — Z wz(Uﬁm + Gi2+l,m)]
i=1 i=2 i=1

m
2 2 2 2r 2 2 2 2
=w Z(Gi—l,m +oiiam) toloim+0om+omm+ omiml
i=1
m
_ 2 2 2r 2 2 2 2 2r 2 2 2 2
=20 Zgi,m to [UO,m ~Omm T Omeim — Gl,m] +tw [Ul,m +oomtTOmmTt 6m+1,m]
i=1

m
= 20° Z O'ﬁm + 2a)2[oam + 0r2n+l,m]'
i=1

5. The autocovariances between the last two terms are gywen b

E[Vi.mWi+hml = E[Y mUi+1.m — Ui—2m)Uithm — Ui—14hm) V1 1hm + Yiehm T Yigtehm)]s

showing that coW; m, Wi+1.m) = wzaﬁm, while all other covariances are zero. From this we conclhdeé t
G)=2[23", a)zoﬁm — a)z(oim + ozm’m)] = 4w? Zim:loﬁm — sz(aim + O'rzn’m).

By adding up the five terms we find

m m—-1

4 2 2 \2 4 4 2 2 2 2 4 4

6Z"i,m -2 Z(Ui-i-l,m —0im) =20 1M+t 0mm + 0T moom + OmmOmiim + 80'M— 6w
i=1

i=1
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m m m
+ 207 Zaiz,m + 207 Zaﬁm + 26‘)2[(76,m + aﬁ”l+1,m] + 40? Z Uiz,m - 2wz[aim + O‘ﬁ"l,m]
i=1 i=1 i=1

m m
— 8o 4 8023 0% — 60" 463 o 1,
i=1 i=1

where

— 2 2 \2 4 4 2 2 2 2
m = _Zz(ai-i-l,m —0im) =201 m+0mm + 0T mOOom + mmCmiim

2, 2 2 2 2
+20°(0 5 m — o1lm+ Omitm — Omm)-

Under BTS it follows immediately that,= O(m‘z). Under CTS we use the Lipschitz condition, which
states thafle > 0 such thatlo?(t) — o(t + h)| < ¢h for all t and allh. This shows thato? | =
|ftt'm o2(s)ds| < §SUR, , 1 <s<tm o2(s) = O(m™Y), sinced = 8im = (b —a)/m = Om™1) under
CTS, and ’

ti,m ti,m
02 —0Zml = || 0% —o¥s—s)ds] 5/ 10%(9) — 02(s — 8)[ds
ti—1m ti—l,m
< & sup |o%(S) —c?(s—8)| < 8% = O(m~?).

ti—1m=<S<tim

Thus) (02 1, — 022 < m- (35)% = O(m~3), which proves thatm = O(m~2), under CTS.
The asymptotic normality is established by expressﬁh\g;\Cl as a sum of a martingale difference se-
quence. Letj m= U(t; ,) and define the sigma algebfam = o (¥, ¥ 1 s - - - » Ui.m, Ui—1m, .. .). First
1 2 3
note t|‘]atyi,m(Yi71,m+yi,m+yiJrl,m)=O'Em + gi(—)l,m f( ) g:i(-i-)l,m’ where
1
si(—)l,m = _Ui—l,myi*_1,m+ui—l,mui—z,m7
2
|(r11 = yifmyiﬂjm_Gi2,m+yi*,myi*—1,m_yi*,mui*2»m+ui,myi*—l,m_i—ui,myiﬂjm_ui,mui*Z,m_ui*l,myifm’
3
Elim = VY om Y mUitnm i mY g b U mbi 11 m—Ui 1 mY g Ui Lmbi11m:
So if we define; = (S(l) 5(2) 5(3) ) (using the conventions, 5(3) (3) =&0= ééﬂl "= Efﬁll "=
it follows that[ RVAC, — IV] = Y& . where{&; . 7. m}erl is a martlngale difference sequence that
is squared integrable, since
wc70+a)<oo fori =0,
20° +0001+w 2+26()2 2—i—o4<<><), fori =1,
EEZ,) = 20, fmtaol o? Aol P +Aol ) 0? +8wt< oo,  forl<i <m,
O' —{—402 2 l+6a)202+4a)2 2 +5a)4<oo, fori = m,
o 0m+1+2w m+l+2a)<oo, fori =m+ 1,

Since m‘l/z[RV,i(r:"l) —IV] = m Y2y ™be  we can apply the central limit theorem for squared
integrable martingales, see Shiryaev (1995, p. 543, thedhe where the only remaining condition to be
verified, is the conditional Lindeberg condition:

m+1

Z E [m_lgﬁml{lmfl/zéi,mbf}|‘7:i—1vm:| _p) 0, asm — oo.
i=0

20

0),
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Since E[gﬁml{‘m—l/Zéi +1=¢}] is bounded byE[£7,,] < co and sup P(L{j¢, pj=eymy= 0 = O, for all
e > 0, it follows that

m+1

E m_l Z giz,ml{lm_l/zéiym|>5}_0
i=0

m+1
=< m_lz |E[fi2,m1{‘m—1/25i1m‘>g}] —0/— 0, asm — oo.
i=0

The Lindeberg condition now follows because convergendg;iimplies convergence in probabilitl

Proof of Corollary 3. The MSE'’s are given from Lemmas 1 and 2, since BTS implies that
rm=0—2(IVZ/m? + IV2/m?) + IV?/m? 4+ IV?/m? 4+ 0 = —2IV?/m?.

Equatingd MSE(RVI™) /am o 412m + 642 — m~2 with zero yields the first order condition of the corollary
and the second result follows similarly fro@MSE(R\ArC“z)/am o 4r? —3m242m 3. W
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Table 1: Equities included in our empirical analysis.

Trans./day Quotes/day
Symbol Name Exchange All 4p#0 All #Ap#0 #Days
AA ALCOA INC NYSE 1454 699 2007 770 742
AXP  AMERICAN EXPRESS NYSE 2267 1179 2938 1267 741
BA BOEING COMPANY NYSE 1687 817 2529 1040 741
C CITIGROUP NYSE 3236 1578 4032 1495 742
CAT CATERPILLAR INC NYSE 1218 601 1955 781 742
DD DU PONT DE NEMOURS NYSE 1727 905 2716 1030 741
DIS WALT DISNEY NYSE 2049 1047 3026 1087 742
EK EASTMAN KODAK NYSE 1089 501 1800 702 741
GE GENERAL ELECTRIC NYSE 3690 1859 4014 1655 742
GM GENERAL MOTORS NYSE 1591 755 2603 991 742
HD HOME DEPOT INC NYSE 2710 1337 3086 1289 742
HON  HONEYWELL NYSE 1477 677 2292 930 741
HPQ  HEWLETT-PACKARD NYSE 2246 1053 2918 1194 742
IBM INT. BUSINESS MACHINES NYSE 3138 1901 4883 2249 741
INTC  INTEL CORP NASDAQ 15907 12388 13579 4566 750
IP INTERNATIONAL PAPER NYSE 1489 710 2269 836 742
JNJ JOHNSON AND JOHNSON NYSE 2023 1139 2377 998 742
JPM J.P. MORGAN NYSE 2280 1188 3091 1364 742
KO COCA-COLA NYSE 1788 904 2298 948 742
MCD  MCDONALDS NYSE 1690 797 2313 807 742
MMM  MINNESOTA MNG MFG NYSE 1487 803 2267 1094 741
MO PHILIP MORRIS NYSE 2080 1055 3254 1009 741
MRK  MERCK NYSE 2117 1032 2549 1064 742
MSFT MICROSOFT NASDAQ 15324 11947 13257 6246 747
PG PROCTER & GAMBLE NYSE 2004 1017 3409 1299 742
SBC  SBC COMMUNICATIONS NYSE 2293 1108 2902 1106 741
T AT & T CORP NYSE 2104 789 2267 734 742
UTx UNITED TECHNOLOGIES NYSE 1360 687 2112 953 741
WMT  WAL-MART STORES NYSE 2380 1261 3084 1226 742
XOM  EXXON MOBIL NYSE 2463 1253 3104 1176 741

The table lists the equities used in our empirical analysis. For each equitytraetedata from the
exchange where it is most actively traded (third column). The averagdeof transactions and
quotes per day are given in columns 4-7. The final columns report timbeof trading day for
each asset.
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Table 2: Noise-to-signal ratio, optimal sampling.

Trades Quotes

Asset  »°-100 IV A-100 my mr  AMSE ®°-100 IV

AA 0.4217 5797  0.0727 77 1190  64.5% -0.0966  5.855
AXP 0.1182 5944  0.0199 184 4354  75.7% -0.0870  5.953
BA 0.2356  5.238  0.0450 107 1924  69.1% -0.0690  5.011
C 0.1814 5138 0.0353 126 2453  71.2% -0.0471 5172
CAT 0.2238 4909  0.0456 106 1899  69.0% -0.1156  4.818
DD 0.2697 4716 0.0572 91 1514  66.9% -0.0778  4.735
DIS 0.6089 5770 01055 60 820  60.7% -0.0511  5.614
EK 0.0838  5.125 0.0164 210 5294 77.1% -0.1047  5.121
GE 0.1964  4.619  0.0425 111 2036  69.6% -0.0347  4.484
GM -0.0169 4700 -0.0036 n/la  nla n/a -0.1346  4.694
HD 0.2728 5788 0.0471 104 1837  68.7% -0.0906  5.689
HON 0.2304  6.926  0.0333 131 2603 71.7% -0.1215  7.037
HPQ 0.2949  10.08  0.0292 142 2961  72.8% -0.1132  9.455
IBM 0.0679 4515 0.0150 222 5759  77.7% -0.0305  4.456
INTC ~ 0.2455 1091  0.0225 170 3847  74.8% -0.1843  10.77
P 0.4114 5463 0.0753 76 1149  64.2% -0.1256  5.559
INJ 0.1088 2465 0.0441 108 1961  69.3% -0.0393  2.341
JPM 0.1008  7.389  0.0136 237 6348 78.3% -0.1018  7.077
KO 0.1847  3.203 0.0577 90 1501  66.8% -0.0656  3.280
MCD 0.6553  3.862 0.1697 44 510 55.3% -0.0168  3.952
MMM  -0.0087 3.389 -0.0026 n/a  nla n/a -0.0814  3.320
MO 0.8021  3.962 0.2025 39 427  53.1% -0.0648  4.169
MRK 0.0964  3.446  0.0280 147 3094  73.1% -0.0580  3.550
MSFT 01688  6.120 0.0276 148 3139  73.2% -0.0888  5.872
PG 0.1423  3.063 0.0465 105 1863  68.8% -0.0202  2.995
SBC 0.2865  4.881 0.0587 89 1475  66.6% -0.0734  5.007
T 0.7740 5531 01399 50 618  57.5% -0.1365  5.842
UTXx -0.0038 4875  -0.0008 n/a n/a n/a -0.1070 4977
WMT 01755  4.946  0.0355 125 2440  71.2% -0.0995  5.024
XOM 0.0979 2588  0.0378 120 2289  70.6% -0.0341 2532

The table presents empirical estimates.df the averagdV, the noise-to-signal ratio, the opti-
maIAsampIing fArequencies faRV™ and R\/A(g‘l), and the reduction of the MSE, 106§(x, mj) —

y2(h, mH)]/y3(, m$) based on transaction data. For quotation data we observe negative estimate
of w? which is evidence of a negative correlation between the noise procgssiarreturns.
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Table 3: Test for time-independent noise (transaction data).

Asset  taen teeo tseo  taoeo  taseo  teoso  tesen t@oeo  teoiso
AA -10.3 1.07 2.54 2.31 1.00 0.11 -0.67 -0.49 -1.10
AXP -7.49 3.57 5.94 3.60 1.88 1.04 0.84 0.26 -0.78
BA -7.12 1.86 2.41 0.30 -1.01 -1.00 -1.06 -1.21 -0.64
C -4.79 8.65 7.88 5.19 3.32 2.69 131 0.74 0.43
CAT -9.84 -1.32 0.62 0.00 -1.04 -0.66 -0.94 -0.40 2.29
DD -11.1 1.19 2.84 2.20 1.04 -0.17 -0.28 -1.08 0.32
DIS -15.1 5.87 4.16 3.73 2.09 1.03 0.53 0.18 1.70
EK -559 -0.72 1.28 1.59 1.42 0.91 0.64 1.48 1.45
GE -13.2 4.29 5.25 5.19 3.19 257 1.05 1.07 -0.12
GM -11.0 -4.18 -0.79 -1.05 -1.49 -2.07 -1.62 -2.06 -0.27
HD -14.0 3.06 4.22 3.55 215 1.29 -0.21 0.36 -1.22
HON -5.30 1.33 1.92 1.51 0.52 0.90 0.91 1.15 -0.03
HPQ -5.02 2.23 2.64 0.95 0.16 0.03 -1.18 -1.43 0.53
IBM -3.97 1.81 4.01 1.90 0.20 -0.31 -0.63 -0.82 -1.07
INTC -21.0 -13.2 -14.9 -9.78 -6.15 -4.79 -2.72 -1.36 -1.03
IP -9.58 1.34 2.28 1.87 1.31 0.88 0.85 0.78 0.71
JNJ -7.87 6.74 7.12 5.38 3.59 291 2.78 1.95 -0.56
JPM -2.42 0.60 0.26 -0.46 -1.42 -1.71 -2.05 -2.24 0.45
KO -10.3 3.99 4.43 2.79 1.52 1.30 1.33 1.21 -0.73
MCD -12.9 5.75 4.35 3.51 2.13 0.64 0.67 1.21 -1.10
MMM -1.79 2.10 2.77 141 0.43 -0.07 -1.08 -0.86 1.88
MO -15.6 2.16 -0.25 0.95 -0.48 -0.21 -0.31 -0.54 -1.92
MRK -9.17 3.47 5.17 4.35 261 194 151 1.43 0.37
MSFT -19.4 -8.13 -12.8 -10.1 -7.11 -5.39 -3.65 -3.25 -1.55
PG -5.82 3.20 3.58 1.62 0.26 -0.44 -1.57 -0.71 -0.32
SBC -9.88 7.71 9.08 7.55 5.26 3.34 2.19 1.53 -1.72
T -13.6 7.84 2.13 4.07 1.68 0.70 -0.09 0.00 -3.12
UTX -2.19 1.35 3.43 2.73 1.65 1.03 0.17 0.21 -0.28
WMT -12.5 3.71 4.14 279 142 -0.08 -0.80 -1.33 -1.06
XOM -3.16 9.65 10.4 6.62 3.88 2.04 0.37 -0.06 -1.48

This table reports-statistics for the hypothesis that the pricing errors are independent. f&dld
is identifies the statistics that are significant at the 5%-significance levelstatistict x 6o, Which

compareRV'*Y to R "™, has power against alternatives for which the dependence endures
for more thatx ticks.
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Table 4: Test for time-independent noise (quotation data).

Asset

AA
AXP
BA

C
CAT
DD
DIS
EK
GE
GM
HD
HON
HPQ
IBM
INTC
P
INJ
JPM
KO
MCD
MMM
MO
MRK
MSFT
PG
SBC
T
UTX
WMT
XOM

t1.60

-5.02
-7.34
-4.08
-0.01
-7.32
-5.67
-1.65
-5.28
-3.59
-12.5
-6.36
-3.95
-3.73
-7.53
-19.5
-5.96
-1.63
-3.69
-5.37
-1.33
-5.13
-6.43
-6.50
-18.4
-2.62
-4.01
-4.27
-5.37
-6.38
1.09

t2.60
-1.99
-1.28
0.09
4.81
-3.70
-2.12
2.46
-2.97
1.17
-8.92
-1.07
-1.30
-0.22
-2.49
-13.3
-2.88
2.95
-0.63
-1.17
1.13
-0.49
-3.42
-1.83
-12.0
0.29
1.83
0.74
-1.90
-1.05
5.98

t(5.60
1.29
5.08
3.70
7.48
0.25

2.19
5.83
0.20
6.39
-2.91
4.56
1.52
4.01
4.40
-3.34
0.70
5.87
1.79
2.83
3.42
3.36

-0.81
3.02
-1.21
3.81
7.84
3.92
2.11
3.37
8.84

t(10,60)
1.32
3.75
2.55
5.60
0.28
1.87
451
1.08
5.76
-1.28
3.73
1.28
3.28
3.91
1.25
1.14
4.31
1.40
1.79
1.96
2.47
-1.13
3.06
3.54
3.04
7.52
1.64
3.08
2.09
5.81

t15.60)
0.08
1.96
0.99
3.72
-0.33
0.68
2.99
0.71
3.88
-1.39
2.48
0.95
1.61
1.79
2.05
0.55
3.00
0.67
1.17
0.72
1.30
-1.79
2.04
4.69
1.96
4.90
-0.25
2.49
-0.05
3.09

t(20,60)
-0.49
1.16
0.39
2.30
-1.01
0.04
2.06
0.34
2.57
-2.12
1.14
0.38
0.65
-0.12
1.90
-0.61
2.47
0.35
0.44
0.10
0.83
-1.98
0.72
4.85
0.48
3.21
-0.79
1.89
-1.18
1.20

t(25,60)
-1.15
0.07
-0.07
1.48
-0.57
-1.12
1.38
0.60
2.49
-1.62
-0.21
0.01
1.19
-0.30
1.81
-0.36
1.86
-0.67
0.43
-0.21
-0.10
-1.98
0.11
4,76
0.18
1.38
-1.27
1.15
-2.24
0.37

t(30.60)
-1.29
0.01
-0.32
0.88
-0.41
-1.27
1.65
0.48
2.11
-1.71
0.25
0.42
0.45
-0.87
1.62
-0.57
1.69
-1.04
-0.06
-0.80
-0.23
-2.08
-0.38
4.31
-0.50
1.01
-1.10
0.05
-2.92
-0.46

t(60.180
-0.50
0.08
-1.49
-0.04
1.21
0.07
-0.14
0.86
-0.19
-1.80
-2.06
-0.09
-0.45
-1.90
2.46
0.24
-0.76
-1.44
0.08
0.03
-0.38
-0.29
0.83
1.26
-0.57
-1.18
-2.77
-0.37
-0.75
-0.54

This table reports-statistics for the hypothesis that the pricing errors are independent. f&dld
is identifies the statistics that are significant at the 5%-significance levelstatistict x 6o, Which

compareRV&'* to R

for more thatx ticks.
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Figure 1: Absolute and relative RMSEs RV andR\c, . The upper panels are results for AA and the lower
panels are results for MSFT. The left panels shw(si, m) andyl(i, m) using empirical estimates far.
The right panels showq (i, m)/y 1 (A, m¥) andy 1 (i, m)/yo(h, ms) that represent the relative efficiencies of
RV(™ and R\A(?i (relative toR\A(glI) andRV(™) | respectively). Thec-axis refers tosi m = (b — a)/min
units of seconds, whete— a = 6.5 hours (a trading day).
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Figure 2: This figure illustrates the effects of market métrocture noise on the RMSE. The left panels
containsy o(A, m) andy ; (&, m) (wide light lines) and (0, m) andy ; (0, m) (thin dark lines), where the thin
dark lines represent the RMSEsR¥(™ andR\A(g‘l) in the absence of noig@? = 0). The right panels show
the percentage increase of the RMSE that is due to noise awfdiu of the sampling frequencyy. The
x-axis refers tdfi m = (b — a)/min units of seconds, whele— a = 6.5 hours (a trading day).

28



Hansen, P. R. and A. Lunde: Realized Variance and MMS Noise

39.2 secs between trades on average

Sampling Frequency in Seconds

36.1 secs between quotes on average

o-o-a R_\é(,_\rgi e-0-0 R_\/(m)

10
0
8 -
3 .
= =
x x
© ©
f=2 j=2 A
&g g °
) )
> > e o
z : z ow
e, 5 9‘/(—‘/.,
“m - . '
6 ~g-g-g- 0B et~ " PO B2 1L
Ynog—o-0
5 4
PENw s 0 BERE EPENw s o BR Y
m N e ocoR5E 8 58 S3aRSENE 88 888 - N eroceR5ES 8 58 SRaRERE 88 888
Sampling Frequency in Seconds Sampling Frequency in Seconds
RV RV™ RV RV™
a-g-a 1 ®-0-0 2.1 secs between trades on average a-a-a ACl ®-0-0 11.5 secs between quotes on average
94
P
74
i —0- 0 OEOCOITNG o g s — o
— _ ¢ T e f AL
= = 54 e
| | @
%] 7] ,u*“ /
= S 4 =
> i~ o o
x N x 34 P
[} oy @ R
g g e
z L 2 24~
<< \ _ <<
14
PeNn w ro 0B ERNE8E S8 BRE Perrn w ro oD ERNE8Y S8 BRE
= M@k o2 has S 0SS o8R8 88 838 888 = Neh e oS S S o838R888 88 888

Sampling Frequency in Seconds

Vo v Ve v
o-o-oR ACl e.0-0 R 39.2 secs between trades o-o-oR ACl o0 0 R 36.1 secs between quotes on average
N 10
147
9
8
3 z,]
> >
x < A o e
[<&) |0 g —— " _ [} i -8 [- - u,. =
2 m_;:a:a:a-‘.'w'e‘ﬁﬁﬁ—*'-ﬂ""“— g BEEEN -yl G=—0
g g B
Z 5 z
5
4
3 4
nNw Bsg ol BR A N W o ol BR A
moMvesocoREB 8 53 SEERERE 88 858 m v esocoREE 8 53 SEERERE 88 3588
Sampling Frequency in ticks Sampling Frequency in ticks
m) m) m) v(m)
a-o-a RV'&cl ®-e-0 RV( 2.1 secs between trades a-o-a R\/Acl o0 0 R 11.5 secs between quotes on average
0
8
7
i B e H
— ., 6 oa /__,.>I -0 680 B —E=-ua
= \. ~ 5 oo
| . | o o
@ N 72} i e
=3 \ S 4 / -
s
& R Z 31 -
© 5 2 -
2 T, =1 e
& o g .1
z ——g=g-u.ome e - = 27
< I L T L "I
u\u/u.u.uuu
1

chnw hg 0F BR 8 LPnw g 0B BRY
PEN @ A © SRR 8 PEN W Ao © 5 eRa
- N es oeBR5B 8 53 SREEE8E S8 8588 - v es ooBRRB 8 53 SRRESRE S8 8588

Sampling Frequency in ticks

Sampling Frequency in ticks

Figure 3: Volatility signature plots for AA and MSFT usin@irsaction data (left panels) and quotation data
(right panels). The first two rows of panels are volatilitgrsture plots based on calendar time sampling,
whereas the lower two rows are based on transaction timelsemnp

29



Hansen, P. R. and A. Lunde: Realized Variance and MMS Noise

0-0-0ty g0 99% 95% 39.2 secs between trades 0-0-0¢y g0 99% 95% 36.1 secs between quotes
31 -0 3
i /D—_D \D\"'D\
2 / o g
i a / N\ 2
1 [T~y ‘u'u\u _0—0-0-g
0 : e A
/l 8% 8————g 11 o’ N
-1 / b // l:|\
/ /
2] // 0 = g
) A
| / ;
g2 / $ 4 / i a
< 41 | < / SR o
/ // a \\\
i / i
Z b // 2 //':| &
/ /
71 / -3 /
/ /
g
/ 1/
9 / 41 /
/
-10 3 51
T T T T T T T T T TTTTTTITIT0T T 1 T T T T T T T T T TTTTTTTTIT T 1
. N w & oo~Nwo DHEHRY 8 & . N w & oo~Nwo 2HHTN 8 &
Sampling Frequency in ticks Sampling Frequency in ticks
0-0-0ty g0 99% 95% 2.1 secs between trades 0-0-0¢y g0 99% 95% 11.5 secs between quotes
gO0oooat
. H —————————————————————— i 4 D,D—D'D'DD Wﬂn\\
e .
0 21 i 1
7
o
27 nog———""0 0 o
4] do\m/d] 27 ///'
DD% 4 L
6 a - /
[ 0% = /
L g a A uw -6 /
0 // \ ot 0 Je!
a m
= 101 /N y = -8 /
/N a f=e-d 10 /
12 / \ SN /
/ NS -12 7 4
S o /
/ -14 1 /
4 /
7 6]
18/ /
-18 9
-20 T T T T T T T T T TTTTTTITIT0T T 1 T T T T T T T T T TTTTTTTTIT T 1
P N w & 0o~Nwo ZHEHRY 8 & = N w & oo~Nwo 2HHTN ] &
Sampling Frequency in ticks Sampling Frequency in ticks

Figure 4: The figure shows thiestatistics,tx s, Of the hypothesis that the noise process,is time-
independent. Thiy s-test has power against alternative for which the time-ddpace endures for more
thanx ticks, so the figure is informative about the time-dependendai.
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