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Abstract
We examine a simple bias correction of the realized variance(RV) in the situation where observed prices

are contaminated with market microstructure noise. The bias correction can greatly reduce the mean squared

error of theRV, and we show that the bias corrected estimator can be utilized to uncover important charac-

teristics of market microstructure noise. An empirical analysis of the 30 stocks that comprise the Dow Jones

Industrial Average reveals that market microstructure noise is time-dependent and correlated with increments

in the efficient price. These properties are found in both transaction and quotation data. Both characteristics

have important implications for volatility estimation based on high-frequency data.
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1. Introduction

The realized variance(RV) has become a popular empirical measure of volatility, and theRV yields

a perfect estimate of volatility in the hypothetical situation where prices are observed in continuous

time and without measurement error. This result suggests that theRV, which is a sum-of-squared

returns, should be based on returns that are sampled at the highest possible frequency (tick-by-tick

data). However, in practice this leads to a well-known bias problem due to market microstructure

noise, see e.g. Zhou (1996), Andreou & Ghysels (2002), and Oomen (2002). The bias is particularly

evident fromvolatility signature plotsthat were introduced by Andersen, Bollerslev, Diebold &

Labys (2000), and the presence of noise has recently been documented with formal hypothesis

tests by Awartani, Corradi & Distaso (2004). So there is a trade-off between bias and variance

when choosing the sampling frequency, and this is the reason that returnsare typically sampled at

a moderate frequency, such as 5-minute sampling. An alternative way to handle the bias problem
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is to use bias correction techniques, such as the filtering techniques that were used by Ebens (1999)

and Andersen, Bollerslev, Diebold & Ebens (2001) (moving average filter) and Bollen & Inder

(2002) (autoregressive filter). Other bias corrections were recentlyintroduced by Zhang, Mykland

& A ı̈t-Sahalia (2002) (subsample approach) who consider time-independentnoise, and by Hansen

& Lunde (2003) (kernel-based approach) who allow for time-dependence in the noise process.

In this paper, we analyze an estimator that was introduced in this context by Zhou (1996).1

We denote this estimator byRVAC1, because it utilize the first-order autocorrelation to bias-correct

the RV. We make four contributions in this paper. First, we derive the properties ofRVAC1 in a

slightly more general setting than did Zhou (1996), as we allow for non-constant volatility and non-

Gaussian market microstructure noise. Further, we benchmarkRVAC1 to the standard measure ofRV

and show that the former is superior to the latter in terms of the mean squared error (MSE) criterion.

When their respective ‘optimal’ sampling frequencies are employed, we findthat theRVAC1 may

reduce the MSE by 50% or more, compared to the standardRV. Second, we evaluate the distortions

from neglecting the market microstructure noise. Interestingly we find that the asymptotic results

of Barndorff-Nielsen & Shephard (2002) provide reasonably accurate confidence intervals (for the

integrated variance) at low sampling frequencies, such as 20-minute sampling. This finding is some-

what remarkably since Barndorff-Nielsen & Shephard (2002) derive their results in the absence of

market microstructure effects. However, at five-minute sampling we find the“true” confidence inter-

val to be 7%-30% larger than the confidence interval that is based on an assumed absence of noise.

Third, we propose a simple test of the hypothesis of ‘no time-dependence inthe noise process’.

The construction of this test exploits the bias corrected estimator’s ability to uncover features of the

latent noise process. This test is interesting because the absence of time-dependence in the noise

process is commonly assumed when the effects of market microstructure noise are analyzed, see

e.g. Corsi, Zumbach, M̈uller & Dacorogna (2001), Bandi & Russell (2003)2, and Zhang, Mykland

& A ı̈t-Sahalia (2003). Fourth, we uncover some interesting features of market microstructure noise

in an empirical analysis of returns for the equities that comprise the Dow Jones Industrial Average

(DJIA). We find evidence that the noise process is both time-dependent and correlated with the re-

turns of the efficient price. This finding is robust to the choice of sampling method (calendar-time

or tick-time) and the type of price data (transaction prices or quotation prices). These two find-

1This estimator has previously been applied to daily return series by French, Schwert & Stambaugh (1987).
2A later version of the working paper by Bandi and Russell (which appeared after the first version of the present

paper) relax the iid assumption and allow for a mild form of time-dependence. The new version of their paper also argues

in favor of bias correcting the standard measure ofRV.
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ings have important implications for sampling intraday returns at ultra high frequencies, such as

every few ticks or every few seconds. The dependence between the noise process and the efficient

price process has important implications for some of the bias corrections thathave been used in the

literature.

The paper is organized as follows. We formulate assumptions and presenttheoretical results

in Section 2 where we compareRV andRVAC1 and evaluate the accuracy of ‘no-noise’ confidence

intervals for the integrated variance. Section 3 contains our empirical analysis and presents a test for

time-independence in market microstructure noise. Section 4 contains a summary and concluding

remarks. All proofs are presented in the appendix.

2. Definitions and Theoretical Results

Let {p∗(t)} be a latent log-price process in continuous time and let{p(t)} be the observable log-

prices process, such that the measurement error (noise) process is given by u(t) ≡ p(t) − p∗(t).

The noise process,u, may be due to market microstructure effects such as bid-ask bounces, but

the discrepancy betweenp and p∗ can also be induced by the technique that is used to construct

p(t). For example,p is often constructed artificially from observed trades and quotes using the

previous-tickmethod or thelinear interpolationmethod.3

We shall work under the following specification for the efficient price process,p∗.

Assumption 1 The efficient price process satisfies dp∗(t) = σ(t)dw(t), wherew(t) is a standard

Brownian motion,σ(t) is a time-varying (random) function that is independent ofw, andσ 2(t) is

Lipschitz (almost surely).

In our analysis we shall condition on the volatility path,{σ 2(t)}, because our object of interest

is theintegrated variance,

IV ≡
∫ b

a
σ 2(t)dt.

So we can treat{σ 2(t)} as deterministic even though the volatility path is considered to be random.

The Lipschitz condition is a smoothness condition that requires|σ 2(t) − σ 2(t + δ)| < ǫδ for some

ǫ and allt andδ (with probability one).

Next we formulate assumptions about the noise process, where “⊥” refers to stochastic inde-

pendence.

3 The former was proposed by Wasserfallen & Zimmermann (1985) and the latter was used by Andersen & Bollerslev (1997). For

a discussion of the two, see Dacorogna, Gencay, Müller, Olsen & Pictet (2001, sec. 3.2.1).
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Assumption 2 The noise process satisfies:

(i ) p∗ ⊥ u; u(s) ⊥ u(t) for all s 6= t; and E[u(t)] = 0 for all t ;

(i i ) ω2 ≡ E|u(t)|2 < ∞ for all t ;

(i i i ) µ4 ≡ E|u(t)|4 < ∞ for all t .

Assumption 2.i will be maintained throughout our analysis, whereas(i i ) and (i i i ) will only

be made when necessary. To simplify some of our subsequent expressions we define the “excess

kurtosis ratio”,κ ≡ µ4/(3ω4). Assumption 2 is clearly satisfied ifu is a Gaussian ‘white noise’

process,u(t) ∼ N(0, ω2), in which caseκ = 1.

The existence of a noise process,u, that satisfies Assumption 2, follows directly from Kol-

mogorov’s existence theorem, see Billingsley (1995, chapter 7). It is worthwhile to note that ‘white

noise processes in continuous time’ are very erratic processes. In fact, the quadratic variation of an

white noise process is unbounded (as is ther -tic variation for any other integer). So the ‘realized

variance’ of an white process diverges to infinity as the sampling frequency is increased. This is in

stark contrast to the situation for Brownian motion type processes that havefinite r -tic variation for

r ≥ 2, see Barndorff-Nielsen & Shephard (2003).

2.1. Sampling Scheme

We partition the interval [a, b] into m subintervals, and the number of subintervals,m, plays a central

role in our analysis. For example we shall derive asymptotic distributions of quantities, asm → ∞,

and discuss optimal choices form. For a fixedm the i th subinterval is given by [ti−1,m, ti,m], where

a = t0,m < t1,m < · · · < tm,m = b. The length of thei th subinterval is given byδi,m ≡ ti,m − ti−1,m

and we assume that supi=1,...,m δi,m = O( 1
m), such that the length of each subinterval shrinks to zero

asm increases. Theintraday returnsare now defined by,

y∗
i,m ≡ p∗(ti,m) − p∗(ti−1,m), i = 1, . . . , m,

and the increments inp andu are defined similarly and denoted byyi,m andei,m, respectively. Note

that theobserved intraday returnsdecomposes intoyi,m = y∗
i,m +ei,m. Next we define the integrated

variance over each of the subintervals,

σ 2
i,m ≡

∫ ti,m

ti −1,m

σ 2(s)ds, i = 1, . . . , m,

and note that var(y∗
i,m) = E(y∗2

i,m) = σ 2
i,m.
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The realized varianceof p∗ is defined byRV(m)
∗ ≡

∑m
i=1 y∗2

i,m, and it follows thatRV(m)
∗ is

consistent for theIV, asm → ∞, see e.g. Meddahi (2002). An asymptotic distribution theory of

realized variance (in relation to integrated variance) is established in Barndorff-Nielsen & Shephard

(2002). WhileRV(m)
∗ is an ideal estimator – it is not a feasible estimator – becausep∗ is latent.

The realized variance ofp, which is given byRV(m) ≡
∑m

i=1 y2
i,m, is observable but suffers from a

well-known bias problem and is inconsistent for theIV.

The literature has been concerned with different forms of sampling schemes. The special case

whereti,m, i = 1, . . . , m are equidistant in time, i.e.δi,m = (b − a)/m for all i, is referred to as

calendar time sampling(CTS). The widely used exchange rates data from Olsen and Associates,

see M̈uller, Dacorogna, Olsen, Pictet, Schwarz & Morgenegg (1990) are equidistant in time, and

five-minute sampling(δi,m = 5 min) has commonly been used in this context. The case where

the sampling times,t0,m, . . . , tm,m, are such thatσ 2
i,m = IV/m for all i = 1, . . . , m, is referred

to asbusiness time sampling(BTS), see Oomen (2004b). Whereas, the case whereti,m refers to

the time of a transaction/quotation, will be referred to astick time sampling(TTS). An example of

TTS is whenti,m, i = 1, . . . , n, are chosen to be the time of every fifth transaction, say. While

ti,m, i = 0, . . . , m, are observable under CTS and TTS, they are latent under BTS, because the

sampling times are defined from the unobserved volatility path. Yet empirical results by Andersen

& Bollerslev (1997) and Curci & Corsi (2004) suggest that BTS can be approximated by TTS. This

feature is nicely captured in the framework of Oomen (2004b), where the (random) tick times are

generated with an intensity that is directly related to a quantity that corresponds to σ 2(t) in the

present context. Under CTS we will sometimes writeRV(x sec), wherex seconds is the period in

time spanned by each of the intraday returns (i.e.δi,m = x seconds). Similarly, we writeRV(y ticks)

under TTS when each intraday return spansy ticks (transactions or quotations).

The bias-variance properties of theRV(m) have been analyzed by Bandi & Russell (2003) and

Zhang et al. (2003) under an white noise assumption. The following lemma summarizes these results

in our notation, where we use ‘
d→’ to denote convergence in distribution.

Lemma 1 Conditional on{σ 2(s)} and given Assumptions 1 and 2.i-i i it holds that E(RV(m)) =
IV + 2mω2; if Assumption 2.i i i also holds, then

var(RV(m)) = κ12ω4m + 8ω2
m

∑

i=1

σ 2
i,m − (6κ − 2)ω4 + 2

m
∑

i=1

σ 4
i,m,

and

RV(m) − 2mω2

√
κ12ω4m

=
√

m

3κ
(
RV(m)

2mω2
− 1)

d→ N(0, 1), as m→ ∞.
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In the absence of market microstructure noise and under CTS(ω2 = 0 andδi,m = (b − a)/m),

we obtain a result of Barndorff-Nielsen & Shephard (2002), that

var(RV(m)) = 2
m

∑

i=1

σ 4
i,m = 2

m

∫ b

a
σ 4(s)ds+ o( 1

m),

where
∫ b

a σ 4(s)ds is known as theintegrated quarticitythat was introduced by Barndorff-Nielsen &

Shephard (2002).

Next, we consider the estimator of Zhou (1996) that is given by

RV(m)

AC1
≡

m
∑

i=1

y2
i,m +

m
∑

i=1

yi,myi−1,m +
m

∑

i=1

yi,myi+1,m. (1)

This estimator incorporates the empirical first-order autocorrelation, whichamounts to a bias cor-

rection that ‘works’ the same way that robust covariance estimators, such as that of Newey &

West (1987), achieve their consistency. Note that (1) involvesy0,m and ym+1,m that are intra-

day returns outside the interval [a, b]. We choose this formulation because it simplifies several

expressions (by avoidingm/(m − 1) terms). If these two intraday returns are unavailable, one

could simply use the estimator
∑m−1

i=2 y2
i,m +

∑m
i=2 yi,myi−1,m +

∑m−1
i=1 yi,myi+1,m that estimates

∫ b−δm,m

a+δ1,m
σ 2(s)ds = IV + O( 1

m).

In the following lemma we establish results forRV(m)

AC1
that are similar to those forRV(m) in

Lemma 1.

Lemma 2 Conditional on{σ 2(s)} and given Assumptions 1 and 2.i it holds that E(RV(m)

AC1
) = IV; if

Assumption 2.i i also holds then

var(RV(m)

AC1
) = 8ω4m + 8ω2

m
∑

i=1

σ 2
i,m − 6ω4 + 6

m
∑

i=1

σ 4
i,m + rm,

where rm = O(m−2) under CTS and BTS, and

RV(m)

AC1
− IV

√
8ω4m

d→ N(0, 1), as m→ ∞.

An important result of Lemma 2 is thatRV(m)

AC1
is unbiased for theIV at any sampling frequency,

m, and that this result is established under relatively weak assumptions aboutthe noise process.

Also note that Lemma 2 requires weaker assumptions that those needed forRV(m) in Lemma 1. This

is achieved because the expression forRV(m)

AC1
can be rewritten such that it does not involve squared

noise terms, [ui,m]2, i = 1, . . . , m, as doRV(m), whereui,m ≡ u(ti,m). A somewhat remarkable

result of Lemma 2 is that the bias corrected estimator,RV(m)

AC1
, has a smaller asymptotic variance than
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the unadjusted estimator,RV(m). Usually a bias correction is accompanied by a larger asymptotic

variance. Also note that the asymptotic results of Lemma 2 is more useful than that of Lemma 1 (in

terms of estimatingIV), because the result of Lemma 1 does not involve the object of interest,IV,

but only shed light on aspects of the noise process. However, it is also important to note that the

asymptotic result of Lemma 2 does not suggest thatRV(m)

AC1
should be based on intraday returns that

are sampled at the highest possible frequency, since the asymptotic variance is increasing inm! In

other words: WhileRV(m)

AC1
is centered about the object of interest,IV, it is unlikely to be close toIV

asm → ∞.

With CTS (δi,m = (b − a)/m) our expression for the variance is approximately given by

var[RV(m)

AC1
] ≈ 8ω4m + 8ω2

∫ b

a
σ 2(s) − 6ω4 + 6

∫ b

a
σ 4(s)ds

1

m
.

This shows that the variance ofRV(m)

AC1
is about three times larger than that ofRV(m) in the absence

of market microstructure noise(ω2 = 0), for a givenm. This shortcoming can be compensated

for by using a sampling frequency forRV(m1)

AC1
that is three times higher than that ofRV(m0) (i.e.

m1 = 3m0). Our empirical results suggest thatRV(m)

AC1
should be based on intraday returns that are

sampled ten times more frequently than those forRV(m1), such that this component of the total

variance is reduced.

Next, we compareRV(m)

AC1
to RV(m) in terms of their mean square error (MSE) and their respective

optimal sampling frequencies for a special case that illustrates key features of the two estimators.

Corollary 3 Defineλ ≡ ω2/IV, suppose thatκ = 1, and let t0,m, . . . , tm,m be such thatσ 2
i,m =

IV/m (BTS). The mean squared errors are given by4

MSE(RV(m)) = IV2[4λ2m2 + 12λ2m + 8λ − 4λ2 + 2
m ], (2)

MSE(RV(m)

AC1
) = IV2[ 8λ2m + 8λ − 6λ2 + 6

m− 2
m2 ]. (3)

The optimal sampling frequencies for RV(m) and RV(m)

AC1
are given implicitly as the real (positive)

solutions to4λ2m3 + 6λ2m2 − 1 = 0 and4λ2m3 − 3m + 2 = 0, respectively.

We denote the optimal sampling frequencies forRV(m) andRV(m)

AC1
by m∗

0 andm∗
1, respectively,

and these are approximately given by,m∗
0 ≈ (2λ)−2/3 andm∗

1 ≈
√

3(2λ)−1. In our empirical analysis

we findλ−1 to be larger than 1, 000 for most equities, such thatm∗
1/m∗

0 ≈ 31/22−1/3(λ−1)1/3 ≥ 10,

4Equation (3) was derived in Zhou (1996) under the assumption that the noise process is Gaussian. However, his

expression contains a minor error as “−6λ2” is incorrectly written as “−4λ2” (using our notation).
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and this shows thatm∗
1 is several times larger thanm∗

0 in practice. In other words, the optimal

RV(m)

AC1
requires a more frequent sampling than does the ‘optimal’RV. This is quite intuitive, because

RV(m)

AC1
can utilize more information in the data without being affected by a severe bias.Naturally,

when using TTS, the number of intraday returns,m, cannot exceed the total number of transac-

tions/quotations, so in practice it might not be possible to sample as frequently as prescribed by

m∗
1.

Although Corollary 3 is based on somewhat restrictive assumptions (such as σ 2
i,m = IV/m) it

nevertheless captures the salient features of this problem, and the MSE properties (in relation to the

noise process) are characterized by a single parameter,λ. So Corollary 3 provide a very attractive

framework for comparingRV(m) andRV(m)

AC1
, and for evaluating how sensitive these estimators are to

market microstructure noise.

[FIGURE 1 ABOUT HERE]

From Corollary 3 we note that the root mean squared errors (RMSEs) ofRV(m) andRV(m)

AC1
are

proportional to theIV and given byγ 0(λ, m)IV andγ 1(λ, m)IV, respectively, where

γ 0(λ, m) ≡
√

4λ2m2 + 12λ2m + 8λ − 4λ2 + 2
m ,

γ 1(λ, m) ≡
√

8λ2m + 8λ − 6λ2 + 6
m − 2

m2 .

In Figure 1 we have plottedγ 0(λ, m) andγ 1(λ, m) using two empirical estimates ofλ. The estimates

are based on high-frequency stock returns of AA:Alcoa Inc. (upperpanels) and Microsoft:MSFT

(lower panels). The details regarding the estimation ofλ is deferred to the empirical section of this

paper. The left panels presentγ 0(λ̂, m) andγ 1(λ̂, m), where the thex-axis isδi,m = (b − a)/m

in units of seconds. For both equities, we note that theRV(m)

AC1
dominate theRV(m) except at the

very lowest frequencies. The minimum ofγ 0(λ̂, m) andγ 1(λ̂, m) identify their respective optimal

sampling frequencies,m∗
0 andm∗

1. For the AA returns we find the optimal sampling frequencies to

bem∗
0,AA = 77 andm∗

1,AA = 1190 and the theoretical reduction of the MSE is 64.5%. The curvature

of γ 0(λ̂, m) andγ 1(λ̂, m) in the neighborhood ofm∗
0 andm∗

1, respectively, show thatRV(m)

AC1
is less

sensitive to the choice ofm than isRV(m).

The right panels of Figure 1 display the relative MSE ofRV(m)

AC1
to that of (the optimal)RV(m∗

0)

and the relative MSE ofRV(m) to that of (the optimal)RV
(m∗

1)

AC1
. These panels show that theRV(m)

AC1

continue to dominate the ‘optimal’RV(m∗
0) for a wide ranges of frequencies, and not just in a small
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neighborhood of the optimal value,m∗
1. This robustness ofRVAC1 is quite useful in practice where

λ and (hence)m∗
1 are not known with certainty, because the result shows that a reasonably precise

estimate ofλ (and hencem∗
1) will lead to anRVAC1 that dominates the ‘optimal’RV.

[FIGURE 2 ABOUT HERE]

A second very interesting aspect that can be analyzed from the results of Corollary 3, is the

accuracy of theoretical results that are derived under the assumption that λ = 0 (no market mi-

crostructure noise). For example, the accuracy of a confidence interval for IV, which is based on

the asymptotic results of Barndorff-Nielsen & Shephard (2002), will depend onλ andm, and the

expressions of Corollary 3 provide a simple way to quantify the accuracy of such confidence in-

tervals. Figure 2 provide valuable information about this question. The leftpanels of Figure 2

present the RMSEs ofRV(m) andRV(m)

AC1
, using both an estimatêλ > 0 (the case with noise) and

λ = 0 (the case without noise). For small values ofm we see thatγ 0(λ̂, m) ≈ γ 0(0, m) and

γ 1(λ̂, m) ≈ γ 1(0, m), whereas the effects of market microstructure noise are pronounced atthe

higher sampling frequencies. The right panels of Figure 2 quantify the discrepancy between the two

‘types’ of confidence intervals (aboutRV(m)) as a function of the sampling frequency. These plots

present 100[γ 0(λ̂, m) − γ 0(0, m)]/γ 0(0, m) and 100[γ 1(λ̂, m) − γ 1(0, m)]/γ 1(0, m) as a function

of m. So the former reveals the percentage widening of a confidence intervals for IV (aboutRV(m))

due to market microstructure noise, and the second line shows the corresponding widening of the

confidence interval that is constructed aboutRV(m)

AC1
. The vertical lines in the right panels mark the

sampling frequency that corresponds to five-minute sampling under CTS, and these show that the

‘actual’ confidence interval (based onRV(m)) is 31.47% larger than the ‘no-noise’ confidence inter-

val for AA, whereas the enlargement is 7.57% for MSFT. At 20-minute sampling the discrepancy

is less than a couple of percent, so in this case the sized distortion from beingoblivious to market

microstructure noise is quite small. The corresponding increases in the RMSEof RV(m)

AC1
are 3.88%

and 1.44%, respectively. So a ‘no-noise’ confidence interval (aboutRV(m)

AC1
) could, in principle, be

used as a reasonable approximation at moderate sampling frequencies (if abetter alternative is not

available).

3. Empirical Analysis

We analyze stock returns for the 30 equities of the Dow Jones Industrial Average (DJIA). The sample

period spans three years, from January 3, 2000 to December 31, 2002, which delivers a total of 750
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trading days. The data are transaction prices and quotations from the two exchanges NYSE and

NASDAQ, and all data were extracted from the Trade and Quote (TAQ) database.

The raw data were filtered for outliers and we discarded transactions outside the period from

9:30am to 4:00pm, and days with less than five hours of trading were removedfrom the sample,

which reduced the sample to the number of days reported in the last column of Table 1. The average

number of transactions/quotations per day are labelled (All) in Table 1. Our analysis of quotation

data is based on mid-quotes (average of bid and ask prices). When sampling in calendar time we

used the previous-tick method to construct intraday returns, and when sampling in tick-time we

remove price observations that did not result in a ‘price change’.5 The average number of ‘new’

transaction/quotation prices per day is labelled(#1pti 6= 0) in Table 1. TheRVs are calculated for

the hours that the market is open, approximately 390 minutes per day (6.5 hours for most days), and

we denote theRVs on dayt , byRV(m)
t andRV(m)

AC1,t
, t = 1, . . . , n. We present result for all 30 equities

in our tables, whereas the figures present results for two equities: AlcoaInc. (AA) and Microsoft

(MSFT), that represent equities of the DJIA with low and high trading activities, respectively. The

corresponding figures for the other 28 DJIA equities are available uponrequest.

[TABLE 1 ABOUT HERE: Data Description]

3.1. Estimation of Market Microstructure Noise Parameters

From Lemmas 1 and 2 it follows that 2mω2 = E[RV(m) − RV(m̃)

AC1
], wherem̃ is arbitrary. Under the

assumption thatω2 is constant across days, it can be estimated by

ω̂
2 ≡ n−1

n
∑

t=1

1

2mt
(RV(mt )

t − RV(m̃t )

AC1,t
), (4)

wheremt andm̃t need not be constant across days. It the special case where the samefrequencies

are used for all days, (4) simplifies tôω2 = 1
2m(RV

(m) − RV
(m̃)

AC1
), whereRV

(m) ≡ n−1 ∑n
t=1 RV(m)

t

andRV
(m̃)

AC1
≡ n−1 ∑n

t=1 RV(m̃)

AC1,t
.

In order to obtain a precise estimate ofω2 it is important thatRV(m̃t )

AC1,t
is indeed unbiased forIV.

For this reason, we calculateRVAC1,t using tick-time sampling, where each of the intraday returns

spans 60 transactions (or quotations for the mid-quote data). Thusm̃t will (approximately) equal

5The same price is often observed in several consecutive transaction/quotations, because a large trade is divided into

smaller transactions (transaction data) and because the market maker issues a new quote with a different ‘depth’ while the

bid and ask prices are unchanged (quotation data). This censoring does not affectRV but is important forRVAC1, because

it effectively removes all the zero-intraday returns which influence theautocovariances of intraday returns.

10
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the number of transactions (or quotations) on dayt divided by 60. The higher the frequency that is

used forRV(m), the more dominating is the bias term, so we choose a much higher frequency in this

case. Specifically we use one-tick sampling, such that our results are based onRV(mt )
t = RV(1 ticks)

t

andRV(m̃t )

AC1,t
= RV(60 ticks)

AC1,t
.

Under our assumptions it follows that plimm→∞
1

2m(RV(m) − RV(m̃)

AC1
) = plimm→∞

1
2mRV(m), and

1
2mRV(m) is used (as a consistent estimator ofω2) in Zhang et al. (2003) to bias correct their subsam-

ple estimator. In our empirical analysis we do not findRV(m̃)

AC1
to be negligible, even when sampling

at the highest possible frequency, 1-tick sampling. We observed a substantial difference between the

two estimates,12m(RV(m) −RV(m̃)

AC1
) and 1

2mRV(m), so even though both are consistent forω2, the latter

is quite biased for at the sampling frequency,m, that one can use in practice. So we argue that it is

important to incorporateRVAC1, or some other unbiased estimator ofIV, wheneverω2 is estimated

in this way.

SinceRV(m̃)

AC1
is unbiased forIV, it follows that IV ≡ n−1 ∑n

t=1 RV(m̃t )

AC1,t
estimates the average

daily IV over the samplet = 1, . . . , n. So we define

λ̂ ≡ ω̂
2 /

IV ,

which is an estimator of ‘average noise’ divided by ‘average integrated variance’. If bothω2 andIV

are constant across days, such thatλ is the same for all days, then̂λ is consistent forλ under mild

regularity conditions. In practice,λ is unlikely to be constant across days, soλ̂ should be viewed

as a reasonable approximation ofλ, for a typical trading day. Fortunately, Figure 1 showed that

RV(m)

AC1
is relatively insensitive to small deviations fromm∗

1, such that anm̂∗
1 based on a reasonable

approximation forλ, leads to a more accurate estimator thanRV(m) (for anym).

[TABLE 2 ABOUT HERE]

Table 2 contains empirical results for all 30 equities using both transaction and quotation data.

The are several interesting observations to be made from Table 2. For thetransaction data we

note thatλ̂ is typically found to be smaller than 0.1%, and the theoretical reduction of the MSE,

100[γ 2
0(λ̂, m∗

0)−γ 2
1(λ̂, m∗

1)]/γ
2
0(λ̂, m∗

0), is always found to be 50% or more. For example for Alcoa

Inc. we find thatω̂2
AA = 0.4217% and̂λAA = 0.4217%/5.797= 0.0727%, that leads to the optimal

sampling frequencies:m∗
0 = 77 andm∗

1 = 1190. For a typical trading day that is 6.5 hours long

this corresponds to intraday returns that (on average) spans 5 minutes and 20 seconds, respectively.

Bandi & Russell (2003) and Oomen (2004b, 2004a) report ‘optimal’ sampling frequencies forRV(m)

11
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that are similar to our estimates ofm∗
0. By plugging these numbers into the formulae of Corollary

3 we find the reduction of the MSE (from usingRV
(m∗

1)

AC1
rather thanRV(m∗

0)) to be 64.5%, which

suggests thatRV
(m∗

1)

AC1
is about three time more efficient thanRV(m∗

0), provided that Assumptions 1

and 2 hold.

The noise-to-signal ratio,λ, is likely to differ across days, in which case the optimal sampling

frequencies,m∗
0 andm∗

1, will also differ across days. So our estimates above should be viewed as

approximations for ‘daily average values’, in the sense thatm0 = 148 andm1 = 3139 appear to be

a sensible sampling frequencies to use for the MSFT transaction data.

For the quotation data all our estimates ofω2 are negative, a phenomenon that also occurs for

transaction data for three equities. A negative estimate occurs when the sample average ofRV(1 tick)

is smaller than the sample average ofRV(60 ticks)
AC1

. This is obviously in conflict with the results of

Lemmas 1 and 2 that dictate the population difference,E[RV(1 tick) − RV(60 ticks)
AC1

], to be positive.

The expected difference is 2ω2 times a number that is proportional to the average number of trans-

actions/quotations per day. One explanation for observingω̂
2

< 0 is thatω2 ≃ 0, such that the

‘wrong’ sign simply occurs by chance. However, this is highly improbable because all estimates of

ω2 (and not just about half of them) are found to be negative for the quotation data. Our subsequent

analysis will also show that the negative estimates are caused by a violation ofAssumption 2.

3.2. A Hausman-Type Test for Time-Independence of the Noise Process

From Lemma 2 we know thatRV(m)

AC1
is unbiased forIV at any frequency under Assumption 2.i .

This followed from the fact that the innovations of the noise process,ei,m, have a non-zero first-

order autocovariance whereas higher-order autocovariances areall zero. This property is inherited

by the observed intraday returns,yi,m, given our assumptions about the efficient price process. The

estimator,RV(m)

AC1
, is unbiased because it properly corrects for the first-order autocorrelation inyi,m.

However,RV(m)

AC1
may be biased if higher-order autocovariances are non-zero, which would be the

case (for largem) if the noise process,u(t), was dependent across time (a violation of Assumption

2.i .)

[FIGURE 3 ABOUT HERE]

An graphical way to investigate the bias properties ofRV-type estimators is through the so-

called volatility signature plots of Andersen et al. (2000). In Figure 3 we present volatility signature

12
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plots for AA and MSFT using both CTS and TTS, and based on both transaction data and quotation

data. The upper four panels of Figure 3 are based on CTS and these reveal a pronounced bias when

RV(m)

AC1
is based on intraday returns that are sampled more frequently than every 30 seconds. The

main explanation for this is that CTS will sample the same price multiple times whenm is large,

which induces (artificial) autocorrelation in intraday returns. Thus, whenintraday returns are based

on CTS, it is necessary to incorporate higher-order autocovariancesof yi,m, whenm becomes large,

see Hansen & Lunde (2004). The lower four plots are signature plots for TTS and these also reveal

a pronounced bias inRV(x ticks)
AC1

at the highest frequencies. Yet, a comparison of the CTS and TTS

signature plots suggests that TTS dominates CTS, as it allows from a more frequent sampling of

intraday returns. This observation is in line with the results of Oomen (2004b, 2004a), who showed

this to be the case in a jump-process framework.

Another very important result of Figure 3, is that the volatility signature plots drops (rather than

increases) as the sampling frequency increases(asδi,m → 0). This holds for both CTS and TTS,

and bothRV(m) andRV(m)

AC1
. This phenomenon was first documented by Hansen & Lunde (2004), and

their theoretical results show that the negative bias ofRV(m) cannot be explained by time-dependence

in the noise process alone. As easy way to see this is to note that the quadraticvariation of p is the

sum of the quadratic variations ofp∗ andu wheneveru ⊥ p∗. So the bias of (a nontrivial) market

microstructure noise is always positive ifu ⊥ p∗ holds. However, the volatility signature plots

reveal a negative bias, and this strongly suggest that the innovations in the noise process,ei,m, are

negatively correlated with the true returns,y∗
i,m, see Hansen & Lunde (2004, theorem 2).

Because the unbiasness ofRV(m)

AC1
crucially relies on Assumption 2.i, we consider tests of the

hypothesis,

H0 : u ⊥ p∗ and u(s) ⊥ u(t) for all s 6= t.

As is almost evident from Figure 3, there is an overwhelming empirical evidence againstH0. So

there is not need for a very powerful (or an optimal) test in order to conclude thatH0 is false. Instead

we apply significance tests that can identify the reasons thatH0 does not hold. For this purpose we

employ simplet-tests that have power against particular alternatives, and this will help usuncover

the properties of market microstructure noise, and allow us to characterizethe specific violation of

Assumption 2.i that is found in these data.

For the construction of the tests we observe thatRV(m)

AC1
is unbiased for theIV for anym, under

the null hypothesis, such thatRV(m)

AC1
= IV + error(m) whereE(error(m)) = 0. It follows that

dt ≡ RV(m)

AC1,t
− RV(m̃)

AC1,t
= error(m)

t − error(m̃)
t , m 6= m̃,

13
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is the difference between two measurement errors, each having expected value zero, such that

E[dt ] = 0. The variance of the sample average,d̄ ≡ n−1 ∑n
t=1 dt (normalized by

√
n) is con-

sistently estimated by1
n−1

∑n
t=1(dt − d̄)2, because the measurements errors (and hencedt) can be

assumed to be uncorrelated across days. Thus a simple test ofH0, can be based on the following

t-statistic,

t(m,m̃) ≡
√

nd̄

/

√

1
n−1

∑n
t=1(dt − d̄)2 ,

and under the null hypothesis we have thatt(m,m̃)
d→ N(0, 1), asn → ∞, under standard regularity

conditions that are quite plausible to hold in this context.

The power of the test that comparest(m,m̃) to a critical value of a standard Gaussian distribution,

will depend onm andm̃. This can be seen from the decomposition ofRV(m)

AC1
into:

RV(m)

AC1
=

m
∑

i=1

yi,m(yi−1,m + yi,m + yi+1,m) =
m

∑

i=1

(ζ
yy
i,m + ζ uu

i,m + ζ
yu
i,m),

where

ζ
yy
i,m = y∗

i,m(y∗
i−1,m + y∗

i,m + y∗
i+1,m)

ζ uu
i,m = (ui,m − ui−1,m)(ui+1,m − ui−2,m)

ζ
yu
i,m = y∗

i,m(ui+1,m − ui−2,m) + (ui,m − ui−1,m)(y∗
i−1,m + y∗

i,m + y∗
i+1,m).

The expected value of the first term isσ 2
i,m, whereas the last two terms both have expected value

zero under the null hypothesis. The decomposition also shows that autocorrelation in u(t) may

causeE(ζ uu
i,m) 6= 0 and correlation between increments in the efficient price and the noise process,

can cause the expected value of the third term to be non-zero,E(ζ
yu
i,m) 6= 0. So we see that the

test that is based ont(m,m̃) will have power against alternatives for which the bias ofRV(m)

AC1
differs

from that ofRV(m̃)

AC1
, So the test will not have power against alternatives where both estimators are

unbiased. This will occur if the time-dependence inu and the correlation betweenu andy∗
i,m is short

lived. For example, if the time-dependence in the noise process is less than one minute, then it is

easy to verify thatRV(m)

AC1
is unbiased ifm corresponds to intraday returns that each spans a period of

time that is one minute or more. A similar example can be given for the case with TTS.

[TABLE 3 ABOUT HERE:]

[TABLE 4 ABOUT HERE:]
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Tables 3 and 4 containt(m,m̃)-statistics for pairs of(m, m̃). We chosem̃ = 60 in most cases,

becauseRV(60 ticks)
AC1

is unlikely to be biased, such that a rejection ofH0 based ont(m,m̃) must be

attributed toRV(m)

AC1
being biased (form < m̃). Thus our test is a Hausman-type test, because the

sample averages ofRV(x ticks)
AC1,t

andRV(60 ticks)
AC1,t

are both consistent forIV under the null hypothesis,

whereas only the latter is consistent under a particular class of alternatives. From Tables 3 and 4

we see that the pairs, (25,60), (30,60) and (60,180), result in very few rejections (some rejections

are to be expected by pure chance). So there is little evidence thatRV(x ticks)
AC1

is biased forx ≥ 25,

however at the high frequencies, wherex ≤ 10, we see a large number of rejections. This shows

that the implications ofH0 (Assumption 2.i ) do not hold when sampling at a high frequency for both

transaction and quotation.

In Figure 4, we present (signature) plots of thet(m,60 ticks)-statistics for two equities: AA and

MSFT. These plots are representative for most of the 30 equities, wheret(m,m̃) is typically positive

at the medium-high frequencies, whereast(m,m̃) < 0 at the ultra-high frequencies. One possible

explanation for this phenomenon is that autocorrelation inu creates the upwards bias at the medium-

high frequencies, while a short-lived negative correlation betweenu andy∗ results in a negative bias

that dominates the other effect at the ultra-high frequencies. Rounding errors may explain part

of these findings, but further analysis of this aspect, which is beyond thescope of this paper, is

necessary to verify this explanation.

[FIGURE 4 ABOUT HERE]

4. Summary and Concluding Remarks

We have analyzed the properties of market microstructure noise and its influence on empirical mea-

sures of volatility. Our comparison of the bias corrected estimator,RV(m)

AC1
, of Zhou (1996) to the

standard measure of realized variance revealed a substantial improvement in the precision, as the

theoretical reduction of the MSE is about 50%-75%. These gains were achieved with a simple bias

correction that incorporates the first-order autocovariance, and additional improvements are possible

with more sophisticated corrections of the realized variance. For example, the subsample estimator

of Zhang et al. (2003) is an estimator that has better asymptotic properties than RV(m)

AC1
under As-

sumptions 1 and 2. Yet,RV(m)

AC1
has some attractive properties that are useful for studying market

microstructure noise. For example, if there is a short-lived time-dependence in the noise process,
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thenRV(m)

AC1
is biased ifm is above a certain threshold, but remains unbiased for smallm (when the

intraday returns span a period of time that is longer than the time-dependencein the noise process).

We have also evaluation of the accuracy of distributional results that are based on an assumption

that there is no market microstructure noise. We showed that a ‘no-noise’confidence interval based

on the results of Barndorff-Nielsen & Shephard (2002) provide a reasonable accurate approxima-

tion when intraday returns are sampled at low frequencies, such as 20-minute sampling. However,

when intraday returns are sampled at higher frequencies the ‘no-noise’ approximation are likely to

be quite poor. The analogous ‘no-noise’ confidence interval aboutRV(m)

AC1
yields a more accurate

approximation than that ofRV(m), but both are very misleading when intraday returns are sampled

at high frequencies.

More importantly. Our empirical analysis uncovered several characteristics of market microstruc-

ture noise, where the most notably features are: (1) the noise process istime-dependent and (2) the

noise process is correlated with the innovations in the efficient price process. These results were

established for both transaction data and quotation data and were found to hold for intraday returns

that are based on both calendar-time sampling and tick-time sampling.

Several results in the existing literature that analyze volatility estimation from high-frequency

data that are contaminated with market microstructure noise, including our theoretical results in

Section 2, have assumed that the noise process is independent of the efficient price and uncorrelated

in time. Our empirical results suggest that the implications of these assumptions mayhold (at least

approximately) when intraday returns are sampled at relatively low frequencies. So the conclusions

of these papers may hold as long as intraday returns are not sampled more frequently than every 15

ticks, say.

Our empirical results have shown that the sampling of intraday returns at ultra high frequencies,

such as every few ticks, necessitate more general assumptions about thedependence structure of

market microstructure noise. Some results are established in Hansen & Lunde (2004) who use a

general specification for the noise process that can accommodate both types of dependencies that

we found to be empirically relevant. We believe that interesting future research topics include: (1)

deriving estimators that are robust to the various forms of dependencies; (2) a study of the robustness

of existing estimators (to these forms of dependencies), such as the moving-average based estimator

of Ebens (1999) and Andersen et al. (2001), and the subsample based estimator of Zhang et al.

(2003). We leave this for future research.
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Appendix of Proofs

As stated earlier, we condition on{σ 2(t)} in our analysis, thus without loss of generality we treatσ 2(t) as a

deterministic function in our derivations.

Proof of Lemma 1. The bias follows directly from the decompositiony2
i,m = y∗2

i,m + e2
i,m + 2y∗

i,mei,m, since

E(e2
i,m) = E(ui,m − ui−1,m)2 = E(u2

i,m) + E(u2
i−1,m) − 2E(ui,mui−1,m) = 2ω2, where we have used

Assumption 2.i -i i . Similarly, we see that

var(RV(m)) = var(
m

∑

i=1

y∗2
i,m) + var(

m
∑

i=1

e2
i,m) + 4 var(

m
∑

i=1

y∗
i,mei,m)

because the three sums are uncorrelated. The first sum involves uncorrelated terms such that var(
∑m

i=1 y∗2
i,m) =

∑m
i=1 var(y∗2

i,m) = 2
∑m

i=1 σ 4
i,m, where the last equality follows from the Gaussian assumption. For the sec-

ond sum we find

E(e4
i,m) = E(ui,m − ui−1,m)4 = E(u2

i,m + u2
i−1,m − 2ui,mui−1,m)2

= E(u4
i,m + u4

i−1,m + 4u2
i,mu2

i−1,m + 2u2
i,mu2

i−1,m) + 0 = 2µ4 + 6ω4,

E(e2
i,me2

i+1,m) = E(ui,m − ui−1,m)2(ui+1,m − ui,m)2

= E(u2
i,m + u2

i−1,m − 2ui,mui−1,m)(u2
i+1,m + u2

i,m − 2ui+1,mui,m)

= E(u2
i,m + u2

i−1,m)(u2
i+1,m + u2

i,m) + 0 = µ4 + 3ω4,

where we have used Assumption 2.i -i i i . Thus var(e2
i,m) = 2µ4 + 6ω4 − [E(e2

i,m)]2 =2µ4 + 2ω4 and

cov(e2
i,m, e2

i+1,m) = µ4 − ω4. Since cov(e2
i,m, e2

i+h,m) = 0 for |h| ≥ 2 it follows that

var(
∑m

i=1
e2

i,m) =
∑m

i=1
var(e2

i,m) +
∑m

i, j =1
i 6= j

cov(e2
i,m, e2

i+h,m)

= m(2µ4 + 2ω4) + 2(m − 1)(µ4 − ω4) = 4mµ4 − 2(µ4 − ω4).

The last sum involves uncorrelated terms such that

var(
m

∑

i=1

ei,my∗
i,m) =

m
∑

i=1

var(ei,my∗
i,m) = 2ω2

m
∑

i=1

σ 2
i,m.
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By the substitution3κ = µ4 we obtain the expression for the variance. The asymptotic normality is proven

by Zhang et al. (2003) with an argument that is similar to thatwe use forRV(m)
AC1

in our proof of Lemma 2, and

using that 2
∑m

i=1 σ 4
i,m + 2ω2 ∑m

i=1 σ 2
i,m − 4ω4 = O(1).

Proof of Lemma 2. First we note thatRV(m)
AC1

=
∑m

i=1Yi,m + Ui,m + Vi,m + Wi,m, where

Yi,m ≡ y∗
i,m(y∗

i−1,m + y∗
i,m + y∗

i+1,m),

Ui,m ≡ (ui,m − ui−1,m)(ui+1,m − ui−2,m),

Vi,m ≡ y∗
i,m(ui+1,m − ui−2,m),

Wi,m ≡ (ui,m − ui−1,m)(y∗
i−1,m + y∗

i,m + y∗
i+1,m),

sinceyi,m(yi−1,m + yi,m + yi+1,m) = (y∗
i,m + ui,m − ui−1,m)(y∗

i−1,m + y∗
i,m + y∗

i+1,m + ui+1,m − ui−2,m)

=Yi,m+Ui,m+Vi,m+Wi,m. Thus the properties ofRV(m)
AC1

are given from those ofYi,m, Ui,m, Vi,m, andWi,m.

Given Assumptions 1 and 2.i, it follows directly thatE(Yi,m) = σ 2
i,m, andE(Ui,m) = E(Vi,m) = E(Wi,m) =

0, which shows thatE[RV(m)
AC1

] =
∑m

i=1 σ 2
i,m. Note thatE(Ui,m) consists of termsE(ui,mu j,m) wherei 6= j

so Assumption 2.i suffices to establish that the expected value is zero. Given Assumptions 1 and 2.i -i i , the

variance ofRV(m)
AC1

is given by

var[RV(m)
AC1

] = var[
m

∑

i=1

Yi,m + Ui,m + Vi,m + Wi,m] = (1) + (2) + (3) + (4) + (5),

where(1) = var(
∑m

i=1 Yi,m), (2) = var(
∑m

i=1 Ui,m), (3) = var(
∑m

i=1 Vi,m), (4) = var(
∑m

i=1 Wi,m), (5) =
2cov(

∑m
i=1 Vi,m,

∑m
i=1 Wi,m), since all other sums are uncorrelated. Next, we derive the expressions of each

of these five terms.

1. Yi,m = y∗
i,m(y∗

i−1,m + y∗
i,m + y∗

i+1,m) and given Assumption 1 it follows thatE[y∗2
i,my∗2

j,m] = σ 2
i,mσ 2

j,m for

i 6= j, andE[y∗2
i,my∗2

j,m] = E[y∗4
i,m] = 3σ 4

i,m for i = j, such that

var(Yi,m) = 3σ 4
i,m + σ 2

i,mσ 2
i−1,m + σ 2

i,mσ 2
i+1,m − [σ 2

i,m]2 = 2σ 4
i,m + σ 2

i,mσ 2
i−1,m + σ 2

i,mσ 2
i+1,m.

The first-order autocorrelation ofYi,m is

E[Yi,mYi+1,m] = E[y∗
i,m(y∗

i−1,m + y∗
i,m + y∗

i+1,m)y∗
i+1,m(y∗

i,m + y∗
i+1,m + y∗

i+2,m)]

= E[y∗
i,m(y∗

i,m + y∗
i+1,m)y∗

i+1,m(y∗
i,m + y∗

i+1,m)] + 0

= 2E[y∗2
i,my∗2

i+1,m] = 2σ 2
i,mσ 2

i+1,m,

such that cov(Yi,m, Yi+1,m) = σ 2
i,mσ 2

i+1,m, whereas cov(Yi,m, Yi+h,m) = 0 for |h| ≥ 2. Thus

(1) =
m

∑

i=1

(2σ 4
i,m + σ 2

i,mσ 2
i−1,m + σ 2

i,mσ 2
i+1,m) +

m
∑

i=2

σ 2
i,mσ 2

i−1,m +
m−1
∑

i=1

σ 2
i,mσ 2

i+1,m

= 2
m

∑

i=1

σ 4
i,m + 2

m
∑

i=1

σ 2
i,mσ 2

i−1,m + 2
m

∑

i=1

σ 2
i,mσ 2

i+1,m − σ 2
1,mσ 2

0,m − σ 2
m,mσ 2

m+1,m

= 6
m

∑

i=1

σ 4
i,m − 2

m
∑

i=1

σ 2
i,m(σ 2

i,m − σ 2
i−1,m) + 2

m
∑

i=1

σ 2
i,m(σ 2

i+1,m − σ 2
i,m)

−σ 2
1,mσ 2

0,m − σ 2
m,mσ 2

m+1,m
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= 6
m

∑

i=1

σ 4
i,m − 2

m
∑

i=2

σ 2
i,m(σ 2

i,m − σ 2
i−1,m) + 2

m−1
∑

i=1

σ 2
i,m(σ 2

i+1,m − σ 2
i,m)

−σ 2
1,mσ 2

0,m − σ 2
m,mσ 2

m+1,m − 2σ 2
1,m(σ 2

1,m − σ 2
0,m) + 2σ 2

m,m(σ 2
m+1,m − σ 2

m,m)

= 6
m

∑

i=1

σ 4
i,m − 2

m−1
∑

i=1

(σ 2
i+1,m − σ 2

i,m)2 − 2(σ 4
1,m + σ 4

m,m) + σ 2
1,mσ 2

0,m + σ 2
m,mσ 2

m+1,m

2. Ui,m = (ui,m − ui−1,m)(ui+1,m − ui−2,m) and fromE(U2
i,m) = E(ui,m − ui−1,m)2E(ui+1,m − ui−2,m)2 it

follows that var(Ui,m) = 4ω4. The first and second order autocovariance are given by

E(Ui,mUi+1,m) = E[(ui,m − ui−1,m)(ui+1,m − ui−2,m)(ui+1,m − ui,m)(ui+2,m − ui−1,m)]

= E[ui−1,mui+1,mui+1,mui−1,m] + 0 = ω4, and

E(Ui,mUi+2,m) = E[(ui,m − ui−1,m)(ui+1,m − ui−2,m)(ui+2,m − ui+1,m)(ui+3,m − ui,m)]

= E[ui,mui+1,mui+1,mui,m] + 0 = ω4,

whereasE(Ui,mUi+h,m) = 0 for |h| ≥ 3. Thus,(2) = m4ω4 + 2(m − 1)ω4 + 2(m − 2)ω4 = 8ω4m − 6ω4.

3. Vi,m = y∗
i,m(ui+1,m − ui−2,m) such that var(V2

i,m) = σ 2
i,m2ω2 andE[Vi,mVi+h,m] = 0 for all h 6= 0. Thus

(3) = var(
∑m

i=1 Vi,m) = 2ω2 ∑m
i=1 σ 2

i,m.

4. Wi,m = (ui,m − ui−1,m)(y∗
i−1,m + y∗

i,m + y∗
i+1,m) such that var(W2

i,m) = 2ω2(σ 2
i−1,m + σ 2

i,m + σ 2
i+1,m).

The first order autocovariance equals

cov(Wi,m, Wi+1,m) = E[−u2
i,m(y∗2

i,m + y∗2
i+1,m)] = −ω2(σ 2

i,m + σ 2
i+1,m),

while cov(Wi,m, Wi+h,m) = 0 for |h| ≥ 2. Thus

(4) =
m

∑

i=1

[2ω2(σ 2
i−1,m + σ 2

i,m + σ 2
i+1,m) −

m
∑

i=2

ω2(σ 2
i,m + σ 2

i−1,m) −
m−1
∑

i=1

ω2(σ 2
i,m + σ 2

i+1,m)]

= ω2
m

∑

i=1

(σ 2
i−1,m + σ 2

i+1,m) + ω2[σ 2
1,m + σ 2

0,m + σ 2
m,m + σ 2

m+1,m]

= 2ω2
m

∑

i=1

σ 2
i,m + ω2[σ 2

0,m − σ 2
m,m + σ 2

m+1,m − σ 2
1,m] + ω2[σ 2

1,m + σ 2
0,m + σ 2

m,m + σ 2
m+1,m]

= 2ω2
m

∑

i=1

σ 2
i,m + 2ω2[σ 2

0,m + σ 2
m+1,m].

5. The autocovariances between the last two terms are given by

E[Vi,mWi+h,m] = E[y∗
i,m(ui+1,m − ui−2,m)(ui+h,m − ui−1+h,m)(y∗

i−1+h,m + y∗
i+h,m + y∗

i+1+h,m)],

showing that cov(Vi,m, Wi±1,m) = ω2σ 2
i,m, while all other covariances are zero. From this we conclude that

(5) = 2[2
∑m

i=1 ω2σ 2
i,m − ω2(σ 2

1,m + σ 2
m,m)] = 4ω2 ∑m

i=1 σ 2
i,m − 2ω2(σ 2

1,m + σ 2
m,m).

By adding up the five terms we find

6
m

∑

i=1

σ 4
i,m − 2

m−1
∑

i=1

(σ 2
i+1,m − σ 2

i,m)2 − 2(σ 4
1,m + σ 4

m,m) + σ 2
1,mσ 2

0,m + σ 2
m,mσ 2

m+1,m + 8ω4m − 6ω4
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+ 2ω2
m

∑

i=1

σ 2
i,m + 2ω2

m
∑

i=1

σ 2
i,m + 2ω2[σ 2

0,m + σ 2
m+1,m] + 4ω2

m
∑

i=1

σ 2
i,m − 2ω2[σ 2

1,m + σ 2
m,m]

= 8ω4m + 8ω2
m

∑

i=1

σ 2
i,m − 6ω4 + 6

m
∑

i=1

σ 4
i,m + rm,

where

rm ≡ −2
m

∑

i=1

(σ 2
i+1,m − σ 2

i,m)2 − 2(σ 4
1,m + σ 4

m,m) + σ 2
1,mσ 2

0,m + σ 2
m,mσ 2

m+1,m

+2ω2(σ 2
0,m − σ 2

1,m + σ 2
m+1,m − σ 2

m,m).

Under BTS it follows immediately thatrm= O(m−2). Under CTS we use the Lipschitz condition, which

states that∃ǫ > 0 such that|σ 2(t) − σ 2(t + h)| ≤ ǫh for all t and all h. This shows that|σ 2
i,m| =

|
∫ ti,m

ti −1,m
σ 2(s)ds| ≤ δ supti −1,m≤s≤ti,m σ 2(s) = O(m−1), sinceδ = δi,m = (b − a)/m = O(m−1) under

CTS, and

|σ 2
i,m − σ 2

i−1,m| = |
∫ ti,m

ti −1,m

σ 2(s) − σ 2(s − δ)ds| ≤
∫ ti,m

ti −1,m

|σ 2(s) − σ 2(s − δ)|ds

≤ δ sup
ti −1,m≤s≤ti,m

|σ 2(s) − σ 2(s − δ)| ≤ δ2ǫ = O(m−2).

Thus
∑m

i=1(σ
2
i+1,m − σ 2

i,m)2 ≤ m · (δ ǫ
m)2 = O(m−3), which proves thatrm = O(m−2), under CTS.

The asymptotic normality is established by expressingRV(m)

AC1
as a sum of a martingale difference se-

quence. Letui,m= u(t i,m) and define the sigma algebraFi,m = σ(y∗
i,m, y∗

i−1,m, . . . , ui,m, ui−1,m, . . .). First

note thatyi,m(yi−1,m+yi,m+yi+1,m)=σ 2
i,m + ξ

(1)

i−1,m + ξ
(2)

i,m + ξ
(3)

i+1,m, where

ξ
(1)

i−1,m ≡ −ui−1,my∗
i−1,m+ui−1,mui−2,m,

ξ
(2)

i,m ≡ y∗
i,my∗

i,m−σ 2
i,m+y∗

i,my∗
i−1,m−y∗

i,mui−2,m+ui,my∗
i−1,m+ui,my∗

i,m−ui,mui−2,m−ui−1,my∗
i,m,

ξ
(3)

i+1,m ≡ y∗
i,my∗

i+1,m+y∗
i,mui+1,m+ui,my∗

i+1,m+ui,mui+1,m−ui−1,my∗
i+1,m−ui−1,mui+1,m.

So if we defineξ i,m≡ (ξ
(1)

i,m+ξ
(2)

i,m+ξ
(3)

i,m) (using the conventionsξ (2)

0,m= ξ
(3)

0,m= ξ
(3)

1,m= ξ (1)
m,m= ξ

(1)

m+1,m= ξ
(2)

m+1,m= 0),

it follows that[RV(m)

AC1
− IV] =

∑m+1
i=0 ξ i,m, where{ξ i,m,Fi,m}m+1

i=0 is a martingale difference sequence that

is squared integrable, since

E(ξ2
i,m) =



































ω2σ 2
0 + ω4< ∞, for i = 0,

2ω4 + σ 2
0σ

2
1 + ω2σ 2

0 + 2ω2σ 2
1 + σ 4

1< ∞, for i = 1,

2σ 4
i,m+4σ 2

i,mσ 2
i−1,m+4σ 2

i,mω2+4σ 2
i−1,mω2 + 8ω4< ∞, for 1 < i < m,

σ 4
m + 4σ 2

mσ 2
m−1 + 6ω2σ 2

m + 4ω2σ 2
m−1 + 5ω4< ∞, for i = m,

σ 2
mσ 2

m+1 + 2ω2σ 2
m+1 + 2ω4< ∞, for i = m + 1,

Sincem−1/2[RV(m)

AC1
− IV] = m−1/2 ∑m+1

i=0 ξ i,m, we can apply the central limit theorem for squared

integrable martingales, see Shiryaev (1995, p. 543, theorem 4), where the only remaining condition to be

verified, is the conditional Lindeberg condition:

m+1
∑

i=0

E
[

m−1ξ2
i,m1{|m−1/2ξ i,m|>ε}|Fi−1,m

]

p→ 0, asm → ∞.
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Since E[ξ2
i,m1{|m−1/2ξ i,m|>ε}] is bounded byE[ξ2

i,m] ≤ ∞ and supi P(1{|ξ i,m|>ε
√

m}= 0) → 0, for all

ε > 0, it follows that

E

∣

∣

∣

∣

∣

m−1
m+1
∑

i=0

ξ2
i,m1{|m−1/2ξ i,m|>ε}−0

∣

∣

∣

∣

∣

≤ m−1
m+1
∑

i=0

∣

∣

∣
E[ξ2

i,m1{|m−1/2ξ i,m|>ε}] − 0
∣

∣

∣
→ 0, asm → ∞.

The Lindeberg condition now follows because convergence inL1 implies convergence in probability.

Proof of Corollary 3. The MSE’s are given from Lemmas 1 and 2, since BTS implies that

rm= 0 − 2(IV2/m2 + IV2/m2) + IV2/m2 + IV2/m2 + 0 = −2IV2/m2.

Equating∂MSE(RV(m))/∂m ∝ 4λ2m+ 6λ2 − m−2 with zero yields the first order condition of the corollary,

and the second result follows similarly from∂MSE(RV(m)
AC1

)/∂m ∝ 4λ2 − 3m−2 + 2m−3.
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Zhang, L., Mykland, P. A. & Äıt-Sahalia, Y. (2003), A tale of two time scales: Determining inte-
grated volatility with noisy high frequency data, Working Paper w10111, NBER.

Zhou, B. (1996), ‘High-frequency data and volatility in foreign-exchange rates’,Journal of Business
& Economic Statistics14(1), 45–52.

22



Hansen, P. R. and A. Lunde: Realized Variance and MMS Noise

Table 1: Equities included in our empirical analysis.

Trans./day Quotes/day

Symbol Name Exchange All #1p 6= 0 All #1p 6= 0 #Days

AA ALCOA INC NYSE 1454 699 2007 770 742

AXP AMERICAN EXPRESS NYSE 2267 1179 2938 1267 741

BA BOEING COMPANY NYSE 1687 817 2529 1040 741

C CITIGROUP NYSE 3236 1578 4032 1495 742

CAT CATERPILLAR INC NYSE 1218 601 1955 781 742

DD DU PONT DE NEMOURS NYSE 1727 905 2716 1030 741

DIS WALT DISNEY NYSE 2049 1047 3026 1087 742

EK EASTMAN KODAK NYSE 1089 501 1800 702 741

GE GENERAL ELECTRIC NYSE 3690 1859 4014 1655 742

GM GENERAL MOTORS NYSE 1591 755 2603 991 742

HD HOME DEPOT INC NYSE 2710 1337 3086 1289 742

HON HONEYWELL NYSE 1477 677 2292 930 741

HPQ HEWLETT-PACKARD NYSE 2246 1053 2918 1194 742

IBM INT. BUSINESS MACHINES NYSE 3138 1901 4883 2249 741

INTC INTEL CORP NASDAQ 15907 12388 13579 4566 750

IP INTERNATIONAL PAPER NYSE 1489 710 2269 836 742

JNJ JOHNSON AND JOHNSON NYSE 2023 1139 2377 998 742

JPM J.P. MORGAN NYSE 2280 1188 3091 1364 742

KO COCA-COLA NYSE 1788 904 2298 948 742

MCD MCDONALDS NYSE 1690 797 2313 807 742

MMM MINNESOTA MNG MFG NYSE 1487 803 2267 1094 741

MO PHILIP MORRIS NYSE 2080 1055 3254 1009 741

MRK MERCK NYSE 2117 1032 2549 1064 742

MSFT MICROSOFT NASDAQ 15324 11947 13257 6246 747

PG PROCTER & GAMBLE NYSE 2004 1017 3409 1299 742

SBC SBC COMMUNICATIONS NYSE 2293 1108 2902 1106 741

T AT & T CORP NYSE 2104 789 2267 734 742

UTX UNITED TECHNOLOGIES NYSE 1360 687 2112 953 741

WMT WAL-MART STORES NYSE 2380 1261 3084 1226 742

XOM EXXON MOBIL NYSE 2463 1253 3104 1176 741

The table lists the equities used in our empirical analysis. For each equity, we extract data from the

exchange where it is most actively traded (third column). The average number of transactions and

quotes per day are given in columns 4-7. The final columns report the number of trading day for

each asset.
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Table 2: Noise-to-signal ratio, optimal sampling.

Trades Quotes

Asset ω̂
2 · 100 IV λ̂ · 100 m∗

0 m∗
1 1MSE ω̂

2 · 100 IV

AA 0.4217 5.797 0.0727 77 1190 64.5% -0.0966 5.855

AXP 0.1182 5.944 0.0199 184 4354 75.7% -0.0870 5.953

BA 0.2356 5.238 0.0450 107 1924 69.1% -0.0690 5.011

C 0.1814 5.138 0.0353 126 2453 71.2% -0.0471 5.172

CAT 0.2238 4.909 0.0456 106 1899 69.0% -0.1156 4.818

DD 0.2697 4.716 0.0572 91 1514 66.9% -0.0778 4.735

DIS 0.6089 5.770 0.1055 60 820 60.7% -0.0511 5.614

EK 0.0838 5.125 0.0164 210 5294 77.1% -0.1047 5.121

GE 0.1964 4.619 0.0425 111 2036 69.6% -0.0347 4.484

GM -0.0169 4.700 -0.0036 n/a n/a n/a -0.1346 4.694

HD 0.2728 5.788 0.0471 104 1837 68.7% -0.0906 5.689

HON 0.2304 6.926 0.0333 131 2603 71.7% -0.1215 7.037

HPQ 0.2949 10.08 0.0292 142 2961 72.8% -0.1132 9.455

IBM 0.0679 4.515 0.0150 222 5759 77.7% -0.0305 4.456

INTC 0.2455 10.91 0.0225 170 3847 74.8% -0.1843 10.77

IP 0.4114 5.463 0.0753 76 1149 64.2% -0.1256 5.559

JNJ 0.1088 2.465 0.0441 108 1961 69.3% -0.0393 2.341

JPM 0.1008 7.389 0.0136 237 6348 78.3% -0.1018 7.077

KO 0.1847 3.203 0.0577 90 1501 66.8% -0.0656 3.280

MCD 0.6553 3.862 0.1697 44 510 55.3% -0.0168 3.952

MMM -0.0087 3.389 -0.0026 n/a n/a n/a -0.0814 3.320

MO 0.8021 3.962 0.2025 39 427 53.1% -0.0648 4.169

MRK 0.0964 3.446 0.0280 147 3094 73.1% -0.0580 3.550

MSFT 0.1688 6.120 0.0276 148 3139 73.2% -0.0888 5.872

PG 0.1423 3.063 0.0465 105 1863 68.8% -0.0202 2.995

SBC 0.2865 4.881 0.0587 89 1475 66.6% -0.0734 5.007

T 0.7740 5.531 0.1399 50 618 57.5% -0.1365 5.842

UTX -0.0038 4.875 -0.0008 n/a n/a n/a -0.1070 4.977

WMT 0.1755 4.946 0.0355 125 2440 71.2% -0.0995 5.024

XOM 0.0979 2.588 0.0378 120 2289 70.6% -0.0341 2.532

The table presents empirical estimates ofω2, the averageIV, the noise-to-signal ratio, the opti-

mal sampling frequencies forRV(m) andRV(m)

AC1
, and the reduction of the MSE, 100[γ 2

0(λ̂, m∗
0) −

γ 2
1(λ̂, m∗

1)]/γ
2
0(λ̂, m∗

0) based on transaction data. For quotation data we observe negative estimates

of ω2 which is evidence of a negative correlation between the noise process and true returns.
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Table 3: Test for time-independent noise (transaction data).

Asset t(1,60) t(2,60) t(5,60) t(10,60) t(15,60) t(20,60) t(25,60) t(30,60) t(60,180)

AA -10.3 1.07 2.54 2.31 1.00 0.11 -0.67 -0.49 -1.10

AXP -7.49 3.57 5.94 3.60 1.88 1.04 0.84 0.26 -0.78

BA -7.12 1.86 2.41 0.30 -1.01 -1.00 -1.06 -1.21 -0.64

C -4.79 8.65 7.88 5.19 3.32 2.69 1.31 0.74 0.43

CAT -9.84 -1.32 0.62 0.00 -1.04 -0.66 -0.94 -0.40 2.29
DD -11.1 1.19 2.84 2.20 1.04 -0.17 -0.28 -1.08 0.32

DIS -15.1 5.87 4.16 3.73 2.09 1.03 0.53 0.18 1.70

EK -5.59 -0.72 1.28 1.59 1.42 0.91 0.64 1.48 1.45

GE -13.2 4.29 5.25 5.19 3.19 2.57 1.05 1.07 -0.12

GM -11.0 -4.18 -0.79 -1.05 -1.49 -2.07 -1.62 -2.06 -0.27

HD -14.0 3.06 4.22 3.55 2.15 1.29 -0.21 0.36 -1.22

HON -5.30 1.33 1.92 1.51 0.52 0.90 0.91 1.15 -0.03

HPQ -5.02 2.23 2.64 0.95 0.16 0.03 -1.18 -1.43 0.53

IBM -3.97 1.81 4.01 1.90 0.20 -0.31 -0.63 -0.82 -1.07

INTC -21.0 -13.2 -14.9 -9.78 -6.15 -4.79 -2.72 -1.36 -1.03

IP -9.58 1.34 2.28 1.87 1.31 0.88 0.85 0.78 0.71

JNJ -7.87 6.74 7.12 5.38 3.59 2.91 2.78 1.95 -0.56

JPM -2.42 0.60 0.26 -0.46 -1.42 -1.71 -2.05 -2.24 0.45

KO -10.3 3.99 4.43 2.79 1.52 1.30 1.33 1.21 -0.73

MCD -12.9 5.75 4.35 3.51 2.13 0.64 0.67 1.21 -1.10

MMM -1.79 2.10 2.77 1.41 0.43 -0.07 -1.08 -0.86 1.88

MO -15.6 2.16 -0.25 0.95 -0.48 -0.21 -0.31 -0.54 -1.92

MRK -9.17 3.47 5.17 4.35 2.61 1.94 1.51 1.43 0.37

MSFT -19.4 -8.13 -12.8 -10.1 -7.11 -5.39 -3.65 -3.25 -1.55

PG -5.82 3.20 3.58 1.62 0.26 -0.44 -1.57 -0.71 -0.32

SBC -9.88 7.71 9.08 7.55 5.26 3.34 2.19 1.53 -1.72

T -13.6 7.84 2.13 4.07 1.68 0.70 -0.09 0.00 -3.12
UTX -2.19 1.35 3.43 2.73 1.65 1.03 0.17 0.21 -0.28

WMT -12.5 3.71 4.14 2.79 1.42 -0.08 -0.80 -1.33 -1.06

XOM -3.16 9.65 10.4 6.62 3.88 2.04 0.37 -0.06 -1.48

This table reportst-statistics for the hypothesis that the pricing errors are independent. Boldfont

is identifies the statistics that are significant at the 5%-significance level. Thestatistict(x,60), which

comparesRV(x ticks)
AC1

to RV(60 ticks)
AC1

, has power against alternatives for which the dependence endures

for more thatx ticks.

25



Hansen, P. R. and A. Lunde: Realized Variance and MMS Noise

Table 4: Test for time-independent noise (quotation data).

Asset t(1,60) t(2,60) t(5,60) t(10,60) t(15,60) t(20,60) t(25,60) t(30,60) t(60,180)

AA -5.02 -1.99 1.29 1.32 0.08 -0.49 -1.15 -1.29 -0.50

AXP -7.34 -1.28 5.08 3.75 1.96 1.16 0.07 0.01 0.08

BA -4.08 0.09 3.70 2.55 0.99 0.39 -0.07 -0.32 -1.49

C -0.01 4.81 7.48 5.60 3.72 2.30 1.48 0.88 -0.04

CAT -7.32 -3.70 0.25 0.28 -0.33 -1.01 -0.57 -0.41 1.21

DD -5.67 -2.12 2.19 1.87 0.68 0.04 -1.12 -1.27 0.07

DIS -1.65 2.46 5.83 4.51 2.99 2.06 1.38 1.65 -0.14

EK -5.28 -2.97 0.20 1.08 0.71 0.34 0.60 0.48 0.86

GE -3.59 1.17 6.39 5.76 3.88 2.57 2.49 2.11 -0.19

GM -12.5 -8.92 -2.91 -1.28 -1.39 -2.12 -1.62 -1.71 -1.80

HD -6.36 -1.07 4.56 3.73 2.48 1.14 -0.21 0.25 -2.06
HON -3.95 -1.30 1.52 1.28 0.95 0.38 0.01 0.42 -0.09

HPQ -3.73 -0.22 4.01 3.28 1.61 0.65 1.19 0.45 -0.45

IBM -7.53 -2.49 4.40 3.91 1.79 -0.12 -0.30 -0.87 -1.90

INTC -19.5 -13.3 -3.34 1.25 2.05 1.90 1.81 1.62 2.46
IP -5.96 -2.88 0.70 1.14 0.55 -0.61 -0.36 -0.57 0.24

JNJ -1.63 2.95 5.87 4.31 3.00 2.47 1.86 1.69 -0.76

JPM -3.69 -0.63 1.79 1.40 0.67 0.35 -0.67 -1.04 -1.44

KO -5.37 -1.17 2.83 1.79 1.17 0.44 0.43 -0.06 0.08

MCD -1.33 1.13 3.42 1.96 0.72 0.10 -0.21 -0.80 0.03

MMM -5.13 -0.49 3.36 2.47 1.30 0.83 -0.10 -0.23 -0.38

MO -6.43 -3.42 -0.81 -1.13 -1.79 -1.98 -1.98 -2.08 -0.29

MRK -6.50 -1.83 3.02 3.06 2.04 0.72 0.11 -0.38 0.83

MSFT -18.4 -12.0 -1.21 3.54 4.69 4.85 4.76 4.31 1.26

PG -2.62 0.29 3.81 3.04 1.96 0.48 0.18 -0.50 -0.57

SBC -4.01 1.83 7.84 7.52 4.90 3.21 1.38 1.01 -1.18

T -4.27 0.74 3.92 1.64 -0.25 -0.79 -1.27 -1.10 -2.77
UTX -5.37 -1.90 2.11 3.08 2.49 1.89 1.15 0.05 -0.37

WMT -6.38 -1.05 3.37 2.09 -0.05 -1.18 -2.24 -2.92 -0.75

XOM 1.09 5.98 8.84 5.81 3.09 1.20 0.37 -0.46 -0.54

This table reportst-statistics for the hypothesis that the pricing errors are independent. Boldfont

is identifies the statistics that are significant at the 5%-significance level. Thestatistict(x,60), which

comparesRV(x ticks)
AC1

to RV(60 ticks)
AC1

, has power against alternatives for which the dependence endures

for more thatx ticks.
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Figure 1: Absolute and relative RMSEs forRV andRVAC1. The upper panels are results for AA and the lower
panels are results for MSFT. The left panels showsγ 0(λ̂, m) andγ 1(λ̂, m) using empirical estimates forλ.

The right panels showγ 0(λ̂, m)/γ 1(λ̂, m∗
1) andγ 1(λ̂, m)/γ 0(λ̂, m∗

0) that represent the relative efficiencies of

RV(m) andRV(m)
AC1

(relative toRV
(m∗

1)

AC1
andRV(m∗

0), respectively). Thex-axis refers toδi,m = (b − a)/m in
units of seconds, whereb − a = 6.5 hours (a trading day).
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Figure 2: This figure illustrates the effects of market microstructure noise on the RMSE. The left panels
containsγ 0(λ̂, m) andγ 1(λ̂, m) (wide light lines) andγ 0(0, m) andγ 1(0, m) (thin dark lines), where the thin
dark lines represent the RMSEs ofRV(m) andRV(m)

AC1
in the absence of noise(ω2 = 0). The right panels show

the percentage increase of the RMSE that is due to noise as a function of the sampling frequency,m. The
x-axis refers toδi,m = (b − a)/m in units of seconds, whereb − a = 6.5 hours (a trading day).
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Figure 3: Volatility signature plots for AA and MSFT using transaction data (left panels) and quotation data
(right panels). The first two rows of panels are volatility signature plots based on calendar time sampling,
whereas the lower two rows are based on transaction time sampling.
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Figure 4: The figure shows thet-statistics,t(x,60), of the hypothesis that the noise process,u, is time-
independent. Thet(x,60)-test has power against alternative for which the time-dependence endures for more
thanx ticks, so the figure is informative about the time-dependence inu.
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