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Outline of this talk
Valuing variance swaps under compound Poisson assumptions
The impact (or lack thereof) of jumps on the valuation of variance swaps
Finding the risk neutral distribution of quadratic variation
Options on quadratic variation
How to value VIX futures
Estimating volatility of volatility
Volatility of volatility as a traded parameter
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Quadratic variation for a compound Poisson process
Let       denote the return of a compound Poisson process so that
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So                                  .  Expected QV = Variance of terminal distribution for 
compound Poisson processes!  Obviously not true in general (e.g. Heston).
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Examples of compound Poisson processes
Merton jump-diffusion model (constant volatility lognormal plus 
independent jumps).
AVG (Asymmetric variance gamma)
CGMY (More complicated version of AVG)
NIG (Normal inverse Gaussian)

List does not include time-changed models such as VG-CIR
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Valuing variance swaps
We can express the first two moments of the final distribution in terms of 
strips of European options as follows:

So, if we know European option prices, we may compute expected 
quadratic variation – i.e. we may value variance swaps as
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Valuing variance swaps under diffusion assumptions
If the underlying process is a diffusion, expected quadratic variation may 
be expressed in terms of an infinite strip of European options (the log-
strip):

2( ) ( )BST
X dz N z zσ

∞

−∞

′⎡ ⎤ =⎣ ⎦ ∫E

with 

2
( , )( )

2( , )
BS

BS

k T Tkz d k
k T T

σ
σ

−
≡ = −

0

0

2 ( ) 2 ( )
T

X dk p k dk c k
∞

−∞

⎡ ⎤ = +⎣ ⎦ ∫ ∫E�

Equivalently, we can compute expected quadratic variation directly from 
implied volatilities without computing intermediate option prices using 
the formula
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What is the impact of jumps?
In summary, if the underlying process is compound Poisson, we have the 
above formula to value a variance swap in terms of a strip of European 
options and if the underlying process is a diffusion, we have the usual 
well-known formula.

In reality, we don’t know the underlying process but we do know the 
prices of European options.  
Suppose we were to assume a diffusion but the underlying process really 
had jumps.  What would the practical valuation impact be?
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The jump correction to variance swap valuation
Once again, if the underlying process is a diffusion, we can value a 
variance swap in terms of the log-strip:

Also,
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where          is the characteristic function.  
Our assumptions that jumps are independent of the diffusion leads to 
factorization of the characteristic function into a diffusion piece and a pure 
jump piece.  

From the Lévy-Khintchine representation, we arrive at
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The jump correction continued
On the other hand, we already showed that 

where the superscript J refers to the jump component of the process.
It follows that the difference between the fair value of a variance swap 
and the value of the log-strip is given by
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Example:
• Lognormally distributed jumps with mean       and standard deviation      
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• With                                       and                  (from BCC) we get a correction of  
0.00122427  per year which at 20% vol. corresponds to 0.30% in volatility terms.

0.09, 0.14α δ= − = 0.61λ =
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Remarks
Jumps have to be extreme to make any practical difference to the
valuation of variance swaps.
The standard diffusion-style valuation of variance swaps using the log-
strip works well in practice for indices

• From the perspective of the dealer hedging a variance swap using the log-
strip, the statistical measure is the relevant one.

– How often do jumps occur in practice and how big are they?
• Jumps in the risk-neutral measure are driven by the short-dated smile.  

However, the model may be mis-specified.  Jumps may not be the main 
reason that the short-dated skew is so steep.

Single stocks may be another story – jumps tend to be frequent even in 
the statistical measure.



Jim Gatheral, Merrill Lynch, February-2006

A simple lognormal model
Define the quadratic variation

Assume that                       is normally distributed with mean     and 
variance    .
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A simple lognormal model continued
Note that under this lognormal assumption, the convexity adjustment 
(between volatility and variance swaps) is given by
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In the lognormal model, given volatility and variance swap prices, the 
entire distribution is specified and we may price any claim on quadratic 
variation!
Moreover, the lognormal assumption is reasonable and widely assumed 
by practitioners.
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VIX from 1/1/1990 to 2/22/2006
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Consistent with lognormal volatility dynamics!
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Vol term structure and skew under stochastic volatility
All stochastic volatility models generate volatility surfaces with 
approximately the same shape
The Heston model                                                     has an implied 
volatility term structure that looks to leading order like

It’s easy to see that this shape should not depend very much on the 
particular choice of model.
Also, Gatheral (2004) shows that the term structure of the at-the-money 
volatility skew has the following approximate behavior for all stochastic 
volatility models of the form      

So we can estimate     by regressing volatility skew against volatility 
level.                                         
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SPX 3-month ATM volatility skew vs ATM 3m volatility
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Interpreting the regression of skew vs volatility
Recall that if the variance satisfies the SDE

at-the-money variance skew should satisfy

and at-the-money volatility skew should satisfy

The graph shows volatility skew to be roughly independent of volatility 
level so          again consistent with lognormal volatility dynamics.
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A variance call option formula
Assuming this lognormal model, we obtain a Black-Scholes style 
formula for calls on variance:
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Example: One year Heston with BCC parameters
We compute one year European option prices in the Heston model using 
parameters from Bakshi, Cao and Chen.  Specifically

0.04; 0.39; 1.15; 0.64v v η λ ρ= = = = = −

We obtain the following volatility smile:

Obviously, the fair value of the variance swap is 0.04
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Heston formula for expected volatility
By a well-known formula

Then, taking expectations
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We know the Laplace transform                     from the CIR bond formula.
So we can also compute expected volatility explicitly in terms of the 
Heston parameters.
With the BCC parameters, we obtain
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1 Year options on variance
Now we value one year call options on variance (quadratic variation)

• Exactly in the Heston model using BCC parameters
• Using our simple Black-Scholes style formula with 

Results are as follows:

Blue line is exact; dashed red line is lognormal formula
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pdf of quadratic variation
Equivalently we can plot the pdf of the log of quadratic variation

• Exactly in the Heston model using BCC parameters
• Using our lognormal approximation

Results are as follows:

Blue line is exact Heston pdf; dashed red line is lognormal approximation
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Corollary
We note that even when our assumptions on the volatility dynamics are 
quite different from lognormal (i.e. Heston), results are good for 
practical purposes.
In practice, we believe that volatility dynamics are lognormal so results 
should be even better!

So, if we know the convexity adjustment or equivalently, if we have 
market prices of variance and volatility swaps, we can use our simple 
lognormal model to price any (European-style) claim on quadratic 
variation with reasonable results.
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Are volatility option prices uniquely determined by 
European option prices?

We know from Carr and Lee (and then from Friz and Gatheral) that the 
prices of options on quadratic variation are uniquely determined if the 
correlation between volatility moves and moves in the underlying is 
zero.
Moreover, we showed how to retrieve the pdf of quadratic variation from 
option prices under this assumption.

What happens if correlation is not zero?
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The Friz inversion algorithm
We recall from Hull and White that in a zero-correlation world, we may 
write ( ) ( ) ( , )BSc k dy g y c k y= ∫
where                     is the total variance.  In words, we can compute an 
option price by averaging over Black-Scholes option prices conditioned 
on the BS total implied variance.
We assume that the law of                             is given by 
Then
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where d(p,q) is some measure of distance such as relative entropy.
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A local volatility computation
We generate European option prices from the Heston model with BCC 
parameters and compute local volatilities.
We use Monte Carlo simulation to compute the payoff of an option on 
quadratic variation on each path.

Local volatility (the green curve) underprices volatility options.

Note that                  is uniquely determined by European 
option prices!
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What happens if we change the correlation?
Regenerate European option prices from the Heston model with BCC 
parameters but          and recompute local volatilities.
Heston exact results and the lognormal approximation are both 
insensitive to the change in correlation.  What about the local volatility 
approximation?

The local volatility result (orange line) with          is lower still.
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A comment
As Dupire has pointed out, the zero correlation assumption is very 
strong.

• Local volatility is a diffusion process that is consistent with all given 
European option prices.  But volatility moves and stock price moves are 
(locally) perfectly correlated.

Given the prices of European options of all strikes and expirations, even 
restricting ourselves to diffusion processes, the pricing of volatility 
options is not unique.

Dupire’s recent construction of upper and lower bounds on the price of 
an option on volatility suggests the following conjecture:
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A conjecture
Given the prices of European options of all strikes and expirations, of all 
possible underlying diffusions consistent with these option prices, the 
lowest possible value of a volatility option is achieved by assuming local 
volatility dynamics.
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Dupire’s method for valuing VIX futures
Roughly speaking, at time      ,the VIX futures pays

where                                      is quadratic variation between       and      .
Also, as before
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We know                                         in terms of the and      log-strips.  
is estimated as the historical variance of VIX futures prices.

The fair value of the VIX future is then given by 

A practical problem is that the VIX futures don’t trade enough to give 
accurate historical vols.
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Estimating volatility of volatility
We can compute historical volatility of the VIX

…pretty stable at around 80-100%

Annualized 60-day volatility of VIX
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Then we apply the volatility envelope
We note that if                                              , variance swaps should 
behave as 
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We see that the volatility of       should decay exponentially with 
maturity     .   We can identify changes in    with changes in the VIX.
We can estimate      from the term structure of skew for example. 
Or we can use an empirically estimated volatility envelope to decay 
volatility as a function of time to maturity.
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Decaying volatilities
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Decaying volatilities
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Remarks
Note that historical and implied volatilities on Bloomberg are consistent 
with the historical volatility of the VIX.
So we have a practical way of estimating volatility of volatility.
And we can compute variance swaps from the log-strips.
We can then use our simple lognormal model to price any European-
style claim on quadratic variation.
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Trading volatility of volatility: implied vol of vol
We have shown how volatility of volatility might be estimated from 
historical data or alternatively, from a knowledge of the variance-
volatility convexity adjustment.
In practice, even where the convexity adjustment

is traded, there is a bid-offer spread.
So volatility of volatility becomes another implied parameter that is 
effectively quoted and traded with its own bid-offer spread.
An example: the market for the one-year SPX variance-volatility 
convexity adjustment is currently around 0.80-1.30 with the variance 
swap at 15.7% (mid-market).

• Under our lognormal assumption,

• Then the volatility of volatility s is roughly 0.32 bid at 0.42 offered.
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Comparing implied vol of vol with historical
0.32 bid @ 0.42 offered is the effective market for (average) vol of vol
of one-year SPX implied volatility.
According to our earlier analysis, the volatility of one-year volatility 
should be given by
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From the Bloomberg historical VIX futures volatilities, we estimate
Note that the shape of                  is not very different from 
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This translates to an implied spot VIX volatility bid-offer spread of 
0.51-0.67.  
... not inconsistent with historical VIX implied volatility!
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Summary
We showed how to compute expected quadratic variation for compound 
Poisson processes.
We computed the magnitude of the jump correction to the diffusion-
based valuation of variance swaps and suggested that at least for indices, 
jumps have little impact on the valuation.
We described a simple lognormal model for estimating the value of 
options on volatility and related the parameters to the values of variance 
and volatility swaps.
Under the zero correlation assumption, we showed how to recover the 
unique density of quadratic variation from European option prices. 
We investigated whether or not volatility option prices are in general 
uniquely determined by European option prices and showed that they are 
not.
We described Dupire’s method for valuing VIX futures.
Finally, we suggested how to estimate volatility of volatility.
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